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An expansion in powers of 1/¥, where ¥is the dimension of space, is used for the calculation of
the energy of a quantum-mechanical three-body system. It 1s proved that the limit ¥ —
corresponds to the classical motion of a rigid configuration of particles in four-dimensional space.
The results of the summation of the series in 1/¥ are discussed in the cases of an anharmonic

oscillator, the guo muonic atom, and screened helium.

1LINTRODUCTION

We first generalize the initial problem to the case of X-
dimensional space with varable &. In the limit ¥ — «» the
particles form a stable rigid configuration. The quantum os-
cillations around the equilibrium configuration are descried
by perturbation theory in powers of 1/, The physical di-
mension ¥ = 3 is substituted into the final formulas derived
in the limit of large N. This often provides a good approxima-
tion to the initial theory.

The 1/N expansion for the three-body problem was ori-
ginally developed in Ref. 1 in connection with generalized
helium Hamiltonians. In Ref. 1 the first three terms of the 1/
¥ expansion were found by means of a method based on the
Holstein-Primakoff representation for the pseudospin alge-
bra. In Ref. 2 a calculation of seven coefficients of the 1/N
¢xpansion for helium and helium-like ions is described,
wilich is carried out by a simpler method and allows the
determination of the energy with accuracy of 3—4 decimal
points. Later, in Ref. 3 a similar method was used to calcu-
late 11 coefficients for helium. Also, Refs. 48 are devoted to
vanous aspects of the 1/N expansion for the three-body
problem. However, in those references only the lowest or-
ders of the expansion and mainly helium-like systems were
Considered.

In the present work we establish for the first time that
thelimit N~ o corresponds to the classical motion of 2 rigid
tnangular configuration of particles in four-dimensional
*pace. In order to calculate the higher-order coefficients of
the 1/N expansion, we use the same approach as in Refs. 2
3nd 3. We consider a three-particle anharmonic oscillator,
'he tpa muonic atom, and a screened helivm atom as exam-
Ples. In the latter two cases the results of the summation of
the l/N expansion are in agreement with the results of mare
“CCurate variational calculations.

2.DESCRIPTION OF THE METHOD

. LEt. us consider a system of particles with masses m,,

‘np::]' l.rttﬂraf:tlng t.hmugh the potential V{f"g_u Fiis ?'!z) in a

betse with dimension N, = J, where r; is thE. distance
“A particles / and j. We introduce the potential

| Ulsy, s, $) =N2V(N 505, No'sy, Nolsia). (la)

€ assume that the generalized N-dimensional potential is

Vrr{f‘u, Pag, Tia) =NU(N re, N-%ry, N7ra).
Obviously, . _

-

(1b)

¢ confine ourselves here to the consideration of §
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states, or of the states whose wave functions depend -:::-En
the distances between the particles. The action of the i-
mensional kinetic-energy operator on the wave function of

the S state can be written as follows:
3
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where j and & are such that (¢, j,k) forms an even permuta-
tion of the three numbers {1,2,3) and cos 8, = (¥; + 1,
— rz ) (2ryr ) 7' We use the system of units in which
fi= L.

The transformation ® =S8{" 7%, where S, is the
area of the triangle with the sides .5, ¥y, and #,,, removes
from Eq. (2) the terms linear in the derivatives. The N-di-
mensional Schrédinger equation with the potential ¥, 15
reduced to the form

(TH+Vyt(N-3)VL—FE)@=(, (3)
where
d
| 1
Ve = 8 ; mhE’

h, =285, /r;, are the altitudes of the triangle, and £ 1s the
energy. The term tn Eq. (3) containing the potential U, is
stmilar to the centrifugal term (N — 1) (¥ — 3}/(8mr) for
a single particle in a spherically symmetric field.

Letus perform the gauge transformationr, = N7s,; and
write Eq. {3) in the form

(N2THU iy (— BN HON T U —e ) V=00, (4)
where Y{(s5q, S350 $42) = P(r, Fp -, Ugp = U + U 18
the effective potential, and £ = N °E is the reduced energy.
The parameter N ~ ' enters into the coefficients of the second
dertvatives in Eq. (4) in the same manner as the Planck
constant.

Let us assume that the effective potential has a mint-
mum. Then, as can be shown, the energy can be expanded in
a series of powers of 1/
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g =i Bal¥ N (3)

ha=

In the classical limit N — « the wave function Y islocal-
ized in the vicinity of the minimum of Uz, and the energy
becomes equal to £, which is the minimum of /.

In the harmonic-oscillator approximation the function
{/.s — £ 1n the vicinity of the miniinum can be approximat-
ed by the quadratic form of the quantities characterizing the
deviation of the coordinates from the equilibrium point. We
find from Eq. (4) that &, = ¢,,. — 6U/~, where /. is taken
at the point of the minimum of {/_;, and

Eore =Z,( pit .;‘i) 0y,

Temiq

1s the energy of the harmonic oscillator with the frequencies
@, in the state with the guantum numbers p, (i = 1,2,3).
The higher-order coefficients in the expansion (g,, £,
£,, etc.) represent anharmonic corrections. There exists a
recurrence procedure for their calculation, which in the case
of the helinm atom 15 described in Ref. 3. In the present work
we use a stmilar procedure for a general potential. It is not
given here, because of the rather complicated formulas.

3. THELIMIT ¥ .« ANDCLASSICAL MECHANICS

Let us consider the classical motion of two interacting
particies in a central field, 1.e., we confine ourselves here to
the case m; = . Just as the motion of a single particle in a
central field takes place in a single plane, the motion of two
particles takes place within a single four-dimensional space
{or in a space with lower dimension), which is spanned by
the position vectors of the particles r and s and the momen-
tum vectors p and q at some instant of time.

In the four-dimensional space one can form the compo-
nents of the angular-momentum tensor

Ly=np,—rptsaqi—siq
two conserved invariants
Lzztf;LijLﬁ, aHzi,l'r,;L.'jEijq

where L, = 1 £,,,L,, and ¢, is a tensor, antisymmetric in
all indices, such that £,5,, = 1. The following non-negative
invariants are expressed in terms of L * and M:

K=" ( Lyt L) (Lyxt L) =LPEM 20,

from which it followsthat M liesin therange — L <M< L >
The invariant M can be written in the form of a determinant:

1H=jj'r=Eijh.'r;'P;3.h.Q£-

It is obvicus that for M = 0 the motion of the particles be-
comes three-dimensional, In the opposite extreme case,
when M = + L and the motion is four-dimensional “up to
the limits,” K% =0, from which L, = + L for any / and
i
We now describe the classical motion of the particles
when the distances between the particles and the force cen-
ter, and between the particles themselves {r, 5, and 7, respec-
tively), are conserved. This four-dimensional motion of the
particles corresponds to the static solution of the problem in
the variables #, 5, and ¢ when r =9 s =5 ;= |r — i
= ¢'%, and (¥, 5P, 197} is the minimum of the effective
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FIG. 1. Energy levels of the three-particle anharmonic oseit

. L lator
function of the anharmonicity parameter. al

potential, which arises in the quantum problem in the limiy
N — « and includes the centrifugal term

Velr, 5, 1y={N/8) ({/m.h>+1/mh"),

where i1, = 25, /5, b, =28, /r, and Sy =15, — rs.,

Let us specify L = N /2 and M = L ? and introdyce the
axes 1 and 2 of the moving coordinate system in the plane of
the triangle, and the axes 3 and 4 in the orthogonal comple.
ment to this system. On rotation of the axes 3 and 4 the
components L,; and L,, transform as the components of 5
two-dimensional vector, so that we can always make L,

= 0, Taking into account the fact that L; = L,;, wefind tha
the only nonzero components of the angular-momentum
tensor are '

L,;EL£:=—L31=—Lm*NK2
and that the following equations are valid:

F1p3‘|‘51t}3=L13‘—"L, rzPa"l"ﬂzE'::Lza:Um {0a)

rpctsige=Lyu=0, rptaq=Ly=-L. (6b)

Substituting the solution of (6) for the unknowns p,, g,, 5.,
and g, into the expression for the kinetic energy, we find

Tz(F[2+P22}j2m1+(912+q32};2m2+vﬂ (rl 5, ” '
We fix the momenta and coordinates of the particles at
the imtial instant of time as follows:
- p=p.=g,=q,=0),

Then the total energy coincides with the minimum of the
effective potential ¥ + V., and since this energy is con-
served, the conditions {7) are satisfied at any instant of time.
In this case the distances », 5, and ¢ are conserved.

r=r®, s=s', t=tt® (7

4, EXAMPLES OF THE 1/N EXPANSION

4.1. Anharmonic oscillator

We consider here the anharmonic oscillator with the
particle masses m, = m. = 1, m, = o« and with equal pair
interaction potentials v(r; ) = r;/2 + Ar}, whose sum is the
potential ¥. In Fig. 1 we show the energy levels E = N ~*gas
a function of the anharmonicity parameter A, obtained by
summing the 1/¥ expansion by the method of Padé approxi-
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mants. The quantum numbers ( p,, p,, p;) are given in
brackets near each of the curves.

For A = 0 the problem reduces to that of a harmonic
oscillator. In this case, of all the coefficients of the 1 /N ex-
pansion only £, for the ground state, and £, and £, for the
excited states, are nonzero. The energy of the state
( 21: P2, P3) can be calculated exactly:

E=(27/N*) [pA+N/6
+ {ptN/BY (¥3+1) /24 (ps+N/B) V3] .

We note that the factor 27/N 7 arises because of the coeffi-
cient (3/N)®in front of 2 /2 in the N-dimensiona) potential
Vi [see Egs. (1}]. The energies of the states with equal

sums g, + pa + p; with p, = p, ceincide with each other and
form a degenerate level.

At large A the terms A7) are dominant in the potential.
In the case when v = 1, the calculations reveal an unexpect-
ed relation between the frequencies:

61w, ,=1:1419:2003~1:72:2,
Consequently, for large ¥ the energies of the states with the
equal sum 2p, + p, are very close, and for them the 1/N
expansion, because of the strong divergence, is no longer

good. We write the energies of some of the low-lying states
for the case v = #}:

E(0,0,0)=6.417, E(1,0,0)=10.73, E(0, 1, 0)=12.51,
E(0,0, 1)=15, E(2,0,0)=E(0,0, 1).

Only those decimal points are given which are the same for
the approximants {3/3), [3/4], and [4/4] and which are
reliable.

4.2 Muonic atom ppa

We consider the ground state of the muonic atom puer
(M =m, = 206,769, m, = 7293.4).

In order to take into account the double pole in the
tnergy at ¥ =1 (Ref 4), we use the expansion in 1/

(N—1).

L 1]

E'=(N—1)" Y, 0y (N—1) =",
kwx(
Where E' is the energy for the N-dimensional problem with
the potential V i\ determined by the expressions ( 1) with the
Substitution Ay —N, —~ 1 and ¥—N — 1. The corresponding
4pproximants are as foliows:

[0/0)  [34])" (4/4)°  [4/5]° Variational calculation
(Ref. 9)
~392  _5845 -58305 _5831 —583.044

Asis evident, they are in good agreement with the variation-
al caleulation of Ref. 9. In the Coulomb case Ve =Vy=V

[~ —

and £ = E’, and therefore the coefficients £, and ¢} are in-
terrelated.

Two terms of the 1/N expansion for the gueer muonic
atom were obtained recently in Ref. 8: however, the coeffi-
cient £] = — 651.1 differs from the result of the present
work {&; = — 481.4) and is, apparently, wrong.

4.3. Screened helium atom

Let us consider a system of three particles with masses
m, = m, =1, m, = =, interacting with each other via the
Yukawa potential

V (rn Fa, riI}

2 1
- _%_ exp(—6r,) ——exp(—8r.) + ~— exp(—8r:w.).

.i"i i"; }"12

(8}
Just asin the case of a single particle in a Yukawa poten-

tial,'* here we can use perturbation theory in powers of the
SCreening parameter &:

oY pog
k=1
The unperturbed energy £ = — 2.903 724 is the Energy
of the ground state of the helium. Since 3% /38 = 3 at § = 0,
we have 'V = 3. The next two coefficients are expressed in
terms of the mean values calculated in Ref. 11;

E® =i ({ry)—4(r,>)=~1.147909,
E“”=_ih( <r|zz} _4{r12>)=ﬂ-37624\8'?.

The results of the calculation of [2/1](8) are given in the
second column of Table 1.

In Table I we present also the results of summation of
the expansion in /(¥ — 1). For §20.3 they are in better
agreement with the variational calculation'? (the fourth col-
umn of Table I} than with the results of the expansion in 8.
We note that the effective potential of the screened helium
has a minimum corresponding to the isosceles configuration
of the particles, for § <&, =~ 1.2554,

It is known'® that the energy of the ground state for
N = § coincides with the energy of the excited state (2p)? *P
in a real three-dimensional space. The corresponding results
for the screened helium are

] 0 0.05 0.1 U.1o 0.2 0.25

[4/4)° =-0710505 —0.56869 —0.44506 —033784 —0.24434 —0.18450

At 6 = 0 the approximate resuit coincides with the exact

resudt { — Q.710 500 from Ref. 14) up to five decimal points.
5. CONCLUSION

We have described a method of obtaining the coeffi-
cients of the 1/.¥V expansion for a large class of analytic po-

TABLE ], Energy of the ground state of screened helium.

Yariationatl Yarationai
4 1271] (&) [444] calculation A [2/1] 18] 1454 calculation
{Ref. 12) (Ref. 12)
o 5 | 72903121 _20038 | -2.90372 06 | -1449 | -14363 | —1.45856
gy | 234682 -2.3467 ~2.34700 0.8 | —1.086 | —i.106 — 11033
L |Tl8681 | —18a73 - 1.86845 10 | -0.77 —(1.804 _(L5182]
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