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1. Introduction

The quartic anharmonic oscillator

H =
p2

2
+
x2

2
+ �x4 (1)

is a well-known example of divergent perturbation theory (Bender and Wu 1969).

Perturbation series for the ground-state energy

E(�) =
1

2
+

3

4
��

21

8
�2 +

333

16
�3 �

30885

128
�4 + ::: (2)

that can be calculated to high orders (Bender and Wu 1973, Vrscay and Cizek 1986,

Turbiner and Ushveridze 1988) is commonly used for testing of various summation

procedures that transform the divergent partial sums into convergent approximants

(Reid 1967, Gra� et al 1970, Seznec and Zinn-Justin 1978, Caswell 1978, Dmitrieva

and Plindov 1980, Drummond 1981, Weniger 1993). Here, the series (2) as well as

the energy series for cubic, sextic, and octic anharmonic oscillators are used as a

ground for numerical testing of the e�ciency of Pad�e approximants and their algebraic

generalizations such as quadratic, cubic, and higher degree approximants.

By de�nition, [M;N ] Pad�e approximant to the series E(�) is a rational function

E[M;N ](�) =
p0 + p1� + :::+ pM�

M

1 + q1� + q2�2 + :::+ qN�N
(3)

having the sameM+N+1 �rst coe�cients of Maclaurin expansion as the function E(�)

(Basdevant 1972, Baker 1975). It is de�ned also as a solution of the linear equation

P (�) �Q(�)E[M;N ](�) = 0; (4)

where P and Q are polynomials of degrees M and N respectively which satisfy

P (�) �Q(�)E(�) = O(�M+N+1): (5)

Pad�e approximants and related continued fractions have long history (Brezinski

1991). There is a theory of Stieltjes functions dealing with convergence of Pad�e

approximants (Bender and Orszag 1978). It was proved that the function ��1(E(�)� 1
2
)

for the quartic oscillator belongs to the class of Stieltjes functions. As a result, the series

(2) is Pad�e summable for all complex � when j arg �j < � (Simon 1970, Loe�el et al

1969).

For � < 0 the energy (2) turnes into the double-valued complex energy of resonances

E = E0 � i�=2, where E0 is a position of the energy level, and � is its width. The plus

and minus signs correspond to the incoming and outgoing wave boundary conditions

respectively. The function E(�) has a cut along the negative real axis (Bender and

Wu 1969). Pad�e approximants simulate a cut by a sequence of poles (Baker 1975) that
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deteriorate the convergence near the cut. For negative �, Pad�e approximants to the

series (2) don't converge.

A natural generalization of the ordinary Pad�e approximant to the case of at least

double-valued functions is a quadratic Pad�e approximant (Shafer 1974). The [L;M;N ]

quadratic approximant is de�ned as a solution of the quadratic equation

A(�) +B(�)E[L;M;N ](�) + C(�)E2
[L;M;N ](�) = 0; (6)

where A, B and C are polynomials of degree L, M and N respectively which satisfy

A(�) +B(�)E(�) + C(�)E2(�) = O(�L+M+N+2): (7)

We don't know any general theory of convergence of quadratic approximants. The

convergence seems provable rigorously only for the simplest functions like e� or (1+�)1=3

when the expression for an arbitrary quadratic approximant is known (Shafer 1974).

Applicability of quadratic approximants for various functions of physical interest was

justi�ed numerically (Short 1979, Jeziorski et al 1980, Lin and Bergersen 1981, Common

1982, Mayer and Tong 1985, De'Bell 1992, Goodson et al 1992, Hamer et al 1992). These

approximants do not need to simulate the branch cut by a sequence of poles; for the

series (2) they actually converge on the cut at � < 0 (Sergeev 1995).

In the same spirit an algebraic approximant of arbitrary degree M (Brak and

Guttmann 1990), or "M -power" approximant (Short 1979) is de�ned by the equation

MX

k=0

A(k)(�)Ek
[p0;p1;:::;pM ](�) = 0; (8)

where A(k)(�) are polynomials in � of degree pk (k = 0; 1; :::;M) which satisfy

MX

k=0

A(k)(�)Ek(�) = O(�p�1); (9)

where p =
PM

k=0(pk + 1) is a total number of polynomial coe�cients. This is a special

case of more general approximation scheme (Hermite 1893, Pad�e 1894) known as Pad�e{

Hermite approximants (Della Dora and Di-Crescenzo 1979, Della Dora 1981). We use

algebraic approximants for the energy of anharmonic oscillators which is a multi-valued

function of the coupling parameter (Shanley 1986).

The paper of Short (1979) is probably the closest prototype of the present

study. There, similar multi-valued approximants were designed to incorporate into

approximation scheme a branch-point structure of Feinman matrix elements. For the

simple example of the multi-valued function ln(1 � z), Short (1979) observed that the

quadratic approximants reduce the errors by roughly two orders of magnitude compared

with Pad�e approximants. Then, he found a similar improvement in accuracy of quadratic

and especially cubic approximants for certain Feinman integrals. He noted also that the

quadratic approximants approximate f(z) on two Riemann sheets. "Thus, starting
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from the power series containing information on only one sheet, we are able to obtain

convergent results on two sheets of f(z); the quadratic approximants therefore continue

the function from one Riemann sheet to another" (p. 172). "Using multi-valued

approximants, we can obtain a certain amount of information on the unphysical sheet

together with very good results on the physical sheet" (p. 175). Here, we give still more

convincing evidence of the power of algebraic approximants extending calculations to

extremely high orders of perturbation theory.

2. Calculation of algebraic approximants at large orders

The [p0; p1; :::; pM ] approximant is calculated usually by solving the system of p � 1

linear homogeneous equations for p coe�cients of the polynomials A(0), A(1),..., A(M)

(Della Dora and Di-Crescenzo 1979). This system follows from (9) after expanding of

its left-hand side in powers of � and putting to zero the coe�cients of �0, �1, ..., �p�2.

Any solution may be multiplied by a common factor; under the condition A(0)(0) = 1

the solution is generally unique.

For ordinary Pad�e approximants, the [L;M ] approximants with L =M ("diagonal"

approximants) or L � M are known to be more accurate than the approximants with

L >> M or L << M (Baker 1975). We believe that quadratic and higher degree

approximants with near equal indexes are also the most accurate. Here, we use a special

algorithm for such approximants that is much faster and needs much less memory at

large orders than solving the system of linear equations (Sergeev 1986).

Our algorithm is based on successive calculation of polynomials A
(k)
N (�) (k =

0; 1; :::;M) and remainder functions

RN (�) = ��N
MX

k=0

A
(k)
N (�)Ek(�): (10)

for N = 0; 1; 2; :::.

At initial steps of our calculation for N = 0; 1; :::;M , we set the polynomials A
(k)
N (�)

to constants

A
(k)
N (�) = Ck

N [�E(0)]
N�k; (11)

where Ck
N are binomial coe�cients, Ck

N = N !=[k!(N � k)!] if k � N or zero otherwise.

Corresponding remainder functions are

RN (�) = ��N [E(�)� E(0)]N : (12)

Subsequent recursive steps (N = M + 1;M + 2; :::) are threefold. First, de�ne

subsidiary (auxiliary?) polynomials A
(k)
N;0 (k = 0; 1; :::;M) and a subsidiary remainder

function RN;0 as

A
(k)
N;0(�) = �A

(k)
N�M�1(�); (13)
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RN;0(�) = RN�M�1(�): (14)

Second, de�ne subsequently for p = 1; 2; :::;M another subsidiary polynomials and

remainder functions as

A
(k)
N;p(�) = A

(k)
N;p�1(�)RN�M+p�1(0)�RN;p�1(0)A

(k)
N�M+p�1(�); (15)

RN;p(�) = ��1[RN;p�1(�)RN�M+p�1(0) �RN;p�1(0)RN�M+p�1(�)]: (16)

And third, calculate

A
(k)
N (�) = A

(k)
N;M(�); (17)

RN (�) = RN;M(�): (18)

Equations (11) { (18) are very feasible for computer programming.

The N -th algebraic approximant EN (�) (N = M;M + 1; :::) is de�ned by the

equation

MX

k=0

A
(k)
N (�)Ek

N (�) = 0: (19)

For M = 1 our algorithm reduces to the method of continued fractions (Bender and

Orszag 1978). Our functions EN (�) are identical to truncated continued fractions that

are members of "stepwise" Pad�e sequence [0; 0], [1; 0], [1; 1], [2; 1],... Equations (15) are

three-term recurrence relations for numerators and denominators of continued fractions.

The �rst 105 coe�cients of the continued fraction for the series (2) were listed by Vrscay

and �C���zek (1986) who studied their large-order behaviour.

ForM = 2, our algorithm is equivalent to the method of Mayer and Tong (1985). It

generates a sequence of quadratic approximants [0; 0; 0], [1; 0; 0], [1; 1; 0], [1; 1; 1], [2; 1; 1],

...

For arbitrary M = 1; 2; 3; ::: the functions AN(�) are algebraic approximants

[ L;L;L; :::; L;| {z } L� 1; L� 1; :::; L� 1| {z } ]

K + 1 M �K
(20)

where L satis�es the equation N = L(M +1) +K with 0 � K �M . They are listed in

the table 1.

The approximant (20) has M branches representing roots of the polynomial (19).

Let us consider asymptotic behavior of approximants at � ! 0 and at �!1.

It follows from (??) that E(0) is a root of a polynomial P (E) =
PM

k=0A
(k)
N (0)Ek

(N � M). We don't consider here the case of a multiple root when E(0) is also a

root of a polynomial dP=dE (it may occur accidentally, but is rare in practice). Then,

according to a theorem of Baker (Baker and Graves-Morris 1995, p. 534) the root of the

equation (19) speci�ed by EN(0) = E(0) di�ers from the de�ning series E(�) by an error

at worst O(�N ). This root will be referred as a main branch. It is used commonly as a
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Table 1. Sequences of algebraic approximants generated by recurrence relations (15)

for di�erent degrees M .

N M = 1 M = 2 M = 3 M = 4 M = 5 ...

1 [0; 0]

2 [1; 0] [0; 0; 0]

3 [1; 1] [1; 0; 0] [0; 0; 0; 0]

4 [2; 1] [1; 1; 0] [1; 0; 0; 0] [0; 0; 0; 0;0]

5 [2; 2] [1; 1; 1] [1; 1; 0; 0] [1; 0; 0; 0;0] [0; 0; 0; 0;0; 0]

6 [3; 2] [2; 1; 1] [1; 1; 1; 0] [1; 1; 0; 0;0] [1; 0; 0; 0;0; 0]

7 [3; 3] [2; 2; 1] [1; 1; 1; 1] [1; 1; 1; 0;0] [1; 1; 0; 0;0; 0]

...

100 [50; 49] [33; 33; 32] [25; 24; 24;24] [20; 19; 19;19;19] [16; 16; 16; 16;16;15]

...

"generalized" sum of the �rst N terms of the series (up to the term of an order �N�1).

It approximates the function on the main sheet of Riemann surface. Supplementary

branches may be useful for approximating of the second, third etc. sheets of Riemann

surface.

At the opposite limit �!1, the approximant EN (�) is de�ned asymptotically by

an equation

KX

k=0

A
(k)
N;0E

k
N (�) + ��1

MX

k=K+1

A
(k)
N;0E

k
N (�) = 0; (21)

where A
(k)
N;0 are coe�cients of polynomials A

(k)
N (�) before the leading term. Let us prove

that K branches of the approximant EN (�) tend to constants, and another M � K

branches behave like �1=(M�K). Generally, solution of the equation (21) behaves at large

� like c�� with some constants c and �. Below, we consider three opportunities: � = 0,

� > 0, and � < 0. If � = 0, then at the leading order in � we have
PK

k=0A
(k)
N;0c

k = 0

that has K solutions in respect to c. If � > 0, then at the leading order in � we have

A
(K)

N;0c
K��K + ��1A

(M)

N;0 c
M��M = 0 that has M �K nonzero solutions if � = (M �K)�1

and none solutions for another �. If � < 0, then at the leading order in � we have

A
(0)
N;0 = 0 that has no solutions. As a result, we �nd that there are K solutions for � = 0

plus M �K solutions for � = (M �K)�1.
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3. Results

3.1. A simple example of a multi-valued function

Firstly, we consider the summation of the series

F (�) = 1 �
1

2
�+

1

3
�2 �

1

4
�3 +

1

5
�2 �

1

6
�3 + ::: (22)

that is an expansion of an in�nitely-valued function ��1 ln(1 + �).

We found that algebraic approximants can approximate both the principal sheet and

neigbor complex sheets of the logarithmic function giving Fn(�) = ��1 [ln(1 + �) + 2�ni]

with integer n as a result of summation. The convergence appears to be similar to

geometric progression:

jFfM;Ng(�) � Fn(�)j � C�N
M;n(�) (23)

Coe�cients CM;n(�) for several M , n, and � were found by numerical �tting, and a

general analytic formula in agreement with numerical results was conjectured:

CM;n(�) =

������
1 � (1 + �)

1

M+1 exp
�

2�i
M+1

h
M+1
2

i�

1� (1 + �)
1

M+1 exp
�

2�i
M+1

n
�

������
(24)

where
h
M+1
2

i
stands for an integer part of a number M+1

2
. Here, jnj � M�1

2
, and

there is no convergence outside this range of n for positive real �. So, approximants of

the M -th degree can approximate 2
h
M�1
2

i
+ 1 branches of the logarithmic function

corresponding to n = �
h
M�1
2

i
;�

h
M�1
2

i
+ 1; :::;

h
M�1
2

i
. A coe�cient C1;0(�) =

h
(1 + �)

1

2 + 1
i h
(1 + �)

1

2 � 1
i
�1

agrees with a theoretical estimate of rate of convergence

of continued fractions to the series (22) (Bender and Orszag 1978).

Dependence on M in (24) is almost linear, CM;n(�) � 2 [ln 2(1 + �) + 4�2n2]
�1=2

M .

Increasing of the degree M always increases CM;n(�) and improves the convergence.

Apart from dependence of the accuracy on N , we study also the dependence on

M , the degree of approximants, i. e. we consider accuracy in rows in the table 1.

The dependence of the accuracy on M is shown on a �gure 1. Optimum degrees of

approximants built from the same number of perturbation series coe�cients correspond

to maxima on the curves. The optimum degree increases with N , but the increasing is

uneven because of 
uctuations of the curves around shallow maxima.

Evaluation of the optimum degree is of particular interest. For a given value of N ,

M varies from 1 to N . We give arguments that optimumM cannot be neither small nor

large. Increasing of CM in (??) with M means that for su�ciently large N > NM an

accuracy of theM+1-th degree approximants is better thanM -th degree approximants.

So for large N , the accuracy �rstly increases with M as long as N > NM , that may be
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attributed to adding new sheets to Riemann surface of approximants. To understand

decrease of the accuracy for large M , let us expand polynomials A(k) =
Ppk

l=0 ak;l�
l and

rewrite the equation de�ning FfM;Ng as

MX

k=0

pkX

l=0

ak;lF
k
fM;Ng

�l = 0; (25)

where pk = L = [N=(M +1)] if k � K = N �L(M +1) or L�1 otherwise, [N=(M +1)]

denotes integer part of a number N=(M + 1). After collecting the terms with the same

powers of �, (25) reads

LX

l=0

B(l)(FfM;Ng)�
l = 0; (26)

where B(l)(FfM;Ng) =
Pml

m=0 am;lF
m
fM;Ng

, ml = M for l < L, mL = K. For higher

M , the degree L becames too small for satisfactory approximation of the inversion

function, and as a result the accuracy decreases. For extreme value M = N , L = 0,

and the approximant is a constant, FfM;Ng(�) = F (0) that obviously is poor. For

N=2 �M < N , equation (26) is equivalent to

� = �
B(0)(FfM;Ng)

B(1)(FfM;Ng)
: (27)

It means that inversion of the function F (�) is approximated by a rational function.

However, the inversion of the function F (�) has in�nitely many square root branch

point (roots of an equation F = 1+ lnF +2n�i with integer n). For N=3 �M < [N=2],

equation (26) reads

B(0)(FfM;Ng) + �B(1)(FfM;Ng) + �2B(2)(FfM;Ng) = 0: (28)

This second kind of quadratic approximants was introduced by Shafer (1974) who de�ned

two kinds of quadratic approximants, either direct or by inversion. We expect that it

works better than rational approximation (27) for multi-valued inversion functions such

as the inversion of F (�). So, accuracy of the inversion function �� for N=3 �M < [N=2]

is probably better than for N=2 �M < N . Accuracy of the direct function �F behaves

similarly since �F = dF
d�
��.

Degrees of the polynomial (25) in variables FfM;Ng and � (M and L respectively)

became equal if M = N=(M + 1), or M = (N + 1)1=2 � 1. These points are marked by

asterisks on �gure 1. Numerical evidence is that they roughly give the optimum degrees

of approximants (marked by circles on �gure 1).

3.2. The quartic anharmonic oscillator

The �rst 41 coe�cients of the series (2) were listed as rational numbers by Turbiner and

Ushveridze (1988). We found exactly all coe�cients up to the 600-th order. Recursive
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calculations of approximants were done using multiple-precision arithmetic (5000 digits)

because the algorithm is numerically unstable (Mayer and Tong 1985).

Accuracy of approximants is measured by a quantity � lg jEN �Ej roughly equal to

the number of accurate digits after the decimal point. Dependence of the accuracy on

N , the number of summed terms of the series (2), is shown on �gures 2{4 for di�erent

�.

The �gure 2 refers to a bound state at � = 1
2
. There, quadratic and especially

cubic approximants converge much better than ordinary Pad�e approximants. Excellent

convergence of cubic approximants for strong coupling constants can be attributed to

the cubic-root singularity of the energy function at � =1, E(�) � b0�
1=3 (Tubiner and

Ushveridze 1988, Guardiola et al 1992). Higher-degree approximants slightly improve

the convergence. The 20-th degree approximants appear to converge up to 80 decimal

places that is several times more than the most accurate result reported previously

(Ta�seli and Demiralp 1988). We found that at large N ln jEN � Ej � �CMN
�M where

�M = 0:5, 0:55, and 0:65 for M = 1, 2, and 3 respectively. Note that convergence of

Pad�e approximants for the series of factorials
P
(�1)kk!�k has similar behavior with

� = 1=2 (Bender and Orszag 1978).

The �gure 3 compares the convergence for di�erent � on a comlex circle j�j = 1=2.

Here we use third-degree polynomial �ts to supress relatively small 
uctuations of curves

around regular trends. Convergence of algebraic approximants for � = i=2 is similar

to � = 1
2
, but the accuracy is slightly poorer. The physical meaning of imaginary

coupling constants will be discussed below. At � = �1
2
, the potential does not support

bound states. Pad�e approximants no longer converge, but quadratic and especially cubic

approximants converge fairly good to a comlex energy of a quasi-stationary state. Note

an appreciable improvement of convergence of higher-degree approximants.

Using the scaling transformation of the variable x = x0 exp(��i=4) in the

Hamiltonian (1), one can prove that the values of � = exp(3
2
i�)�0 correspond to a

double-well problem

HDW =
p2

2
�
x2

2
+ �0x4 (29)

with eigenvalues EDW(�0) = �iE(�) (Crutch�eld 1978, Seznec and Zinn-Justin 1978).

These � lie on the second sheet of Riemann surface of the energy function under the

cut (�1; 0). The function E(�) can be calculated on the second sheet using the

supplementary branch of quadratic approximants (Sergeev 1995). Here, we approximate

the second branch of E(�) at � = �i�0 by higher degree approximants also. The

accuracy of results is shown on the �gure 3 for �0 = 1
2
and on a �gure 4 for �0 = 1=10

and �0 = 3=100. Convergence improves signi�cantly with the increasing of the degree of

approximants, especially for smaller �0. We explain this fact by the presence of an in�nite

sequence of square-root branch points near the line arg � = �3
2
� (Bender and Wu 1969).
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In this region, the energy function becomes an essentially in�nitely-valued function. We

believe that the existance of in�nitely many sheets makes higher degree approximants

more e�ective like for the logarithmic function (subsection 3.1). The point � = �i=10

lies closer to the singularity of the largest absolute value �0 = �0:0319934 � 0:0367596i

(Shanley 1986) and to another ones (see a �gure 5) than � = �i=2. So, higher-degree

approximants are especially e�ective in this case. The point � = �0:03i is surrounded

by several singularities (see the �gure 5). Approximants of lower degrees (less than

four) no longer converge, but the 20-th degree approximants still converge to a purely

imaginary result

E(
3

100
e
3

2
i�) = iEDW(�0) = �1:411 819 732 54i (30)

corresponding to the ground state energy in the double well. Moreover, another branch

of the 20-th degree approximant at higher orders (N > 300) converge to �0:312 162 1i

corresponding to the excited n = 2 state energy in the double well (these two branches

join at the square-root branch point �0 near the point � = �0:03i where the function

E(�) is evaluated).

The main branch of the function E(�) at � = �i�0 (summable by single-valued Pad�e

approximants) corresponds to complex energy of the barrier resonance in the double well,

Er
DW(�0) = �iE(�i�0). The small-coupling expansion

Er
DW(�0) =

�i

2
+

3

4
�0 �

21

8
i�02 +

333

16
i�03 + ::: (31)

represents a formal Rayleigh{Schr�odinger perturbation series for the anharmonic

oscillator 1
2
!2x2 + �0x4 with an imaginary frequency ! = �i. A similar perturbation

theory for resonances was recently used by Fern�andez (1996). Such broad resonances

with the real part of the energy near the potential maximumare associated with chemical

reaction thresholds (Friedman and Truhlar 1991, Friedman et al 1995).

The cases � = 100 and � = 106 displayed at the bottom of the �gure 4 refer to a

strong-coupling region when E(�) � b0�
1=3. Since Pad�e and quadratic approximants

fail to approximate cubic-root singularities, their convergence is very slow. Convergence

of cubic and higher degree approximants is as good as for � = �1=2. The 20-th degree

approximants of the form [L;L; :::; L; L� 1; L � 1; L � 1] (N = 21L + 17) are marked

by crosses on the �gure 4. Their accuracy is considerably better than the averaged

accuracy of the 20-th degree approximants (solid line) because they always have correct

� �1=3-behavior at large � (see the last paragraph of the section 2).

The case � = �1=1000 displayed on the �gure 6 corresponds to a quasistationary

state with extremely small width, =E = �4:319 � 10�144. An error introduced by

Pad�e approximants decreases with N until it reaches � j=Ej. Then it holds steady

on this level. For su�ciently small N when quadratic approximants are still real,

they have near the same error as Pad�e approximants. Then after appearing of an
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imaginary part (when their discriminants become negative) accuracy of quadratic

approximants continues to rise. Partial sums (also given on �gure 6) reach the highest

accuracy jEN �Ej = 1:00023j=Ej at N = 333 when jE(N+1)�N+1j attains its minimum

(1:887 � 10�145). Here, accuracy of all algebraic approximants is also � j=Ej.

3.3. The cubic anharmonic oscillator

The harmonic oscillator with a cubic distortion gx3 is a prototypical system exhibiting

resonances. Its complex eigenvalues were studied both analytically and numerically

(Drummond 1981, Alvarez 1988).

Since odd-order terms of the energy series in g are zero (because the energy is an

even function of g), we de�ne the coupling constant as � = g2 and arrive to the series

with non-zero coe�cients at any term � �k (k = 0; 1; 2; :::):

E(�) =
1

2
�

11

8
��

465

32
�2 �

39709

128
�3 �

19250805

2048
�4 + ::: (32)

Convergence of algebraic approximants to the function (32) at � = 1=4 (see a

�gure 7) looks similar to that to the function (2) for the quartic anharmonic oscillator

at � = �1=2 (see the �gure 3). However, improving of the convergence for the fourth

and for the �fth degree approximants is more appreciable in comparison with the latter

case. We explain this fact by the presence of the �fth order root singularity at in�nity,

E(�) � exp(�i�=5)�1=5 (Alvares 1988).

Using the scaling transformation x = !1=2x0, one can prove that !E(!�5�) is an

eigenvalue in a potential !2x2=2 + �1=2x3. Particularly for ! = exp(��i=2), �iE(e
5

2
i��)

is an eigenvalue in a potential �x2=2 + �1=2x3. A shift transformation reduces this

modi�ed potential to the initial potential,

�
1

2
x2 + �1=2x3 =

1

2
x02 + �1=2x03 �

1

54�
; (33)

where x0 = x+ 1=(3�1=2), and the eigenvalues in a modi�ed potential di�er from initial

ones only by a shift,

� iE(e
5

2
i��) = E(�)�

1

54�
: (34)

So, E(�) = �iE(�0) + 1
54�

, where �0 = exp(5
2
i�)�. The point �0 lies on the second sheet

of Riemann surface under the cut (0;1). E(�0) can be rewritten as E0(i�) where E0

means the second branch of the function E. Thus, the eigenvalues can be calculated

by two di�erent ways. They can be found by direct summation of the series E(�)

(on the principal sheet), and they can be found by calculating the second branch of

approximants at �0 = i�. Such approach is equivalent to expansion of the potential

�x2=2 + �1=2x3 over its local maximum and developing a complex perturbation theory
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for an upturned harmonic oscillator with a purely imaginary frequency with subsequent

summation of the perturbation series on the second sheet.

At � = 1
4
exp(5i�=2) (see the �gure 7), higher degree approximants considerably

improve the convergence. However, the accuracy of results for � = 1
4
exp(5i�=2) is less

than for � = 1
4
, and the second way of calculation of E(�) appears impractical (for this

particular �).

The bottom of the �gure 7 (� = 100) refers to a strong-coupling regime E(�) �

exp(�i�=5)�1=5. Here, the �fth and higher degree approximants considerably improve

the convergence, because they can approximate singularities like �1=5. The 20-th degree

approximants [L;L; :::; L; L� 1; L � 1; L� 1; L � 1; L � 1] (N = 21L + 15) are marked

by crosses on the �gure 7. They always behave like � �1=5 at � ! 1 (see the last

paragraph of the section 2), and their accuracy is much better than averaged accuracy

of the series of the 20-th degree approximants listed in the table 1 (solid line on the

�gure 7).

3.4. Sextic and octic anharmonic oscillators

Perturbation theory for sextic (�x6) and octic (�x8) anharmonic oscillators is strongly

divergent (leading factors are (2k)! and (3k)! respectively, where k is the order of the

perturbation theory). As a result, Pad�e approximants converge very slowly for the

sextic oscillator (even at small �) and fail to converge for the octic oscillator (Gra� and

Grecchi 1978).

We found that quadratic, cubic, and fourth degree approximants for the sextic

anharmonic oscillator converge considerably better than Pad�e approximants (�gure 8)

although their convergence is uneven.

The problem of the octic oscillator is interesting because [N;N ] and [N + 1; N ]

sequences of Pad�e approximants converge to di�erent limits giving lower and upper

bounds to the energy (Austin 1984). We found that diagonal quadratic approximants

converge also to a wrong limit slightly di�erent from the energy, but the achieved number

of correct digits is roughly 2.5 times greater than for diagonal Pad�e approximants, see

the �gure 9. Diagonal cubic approximants seem to converge to a wrong limit also, but

their accuracy is still greater (an upper curve on the �gure 9).

The obtained accuracy both for sextic and for octic oscillators exceeds the accuracy

of Levin's transformation of "renormalized series" (Weniger et al 1993).

4. Conclusion

Algebraic approximants of at least third degree are found very e�ective for summing of

the perturbation series for quantum anharmonic oscillators both on the main sheet and

on neighbour sheets of Riemann surface. Generally, eigenvalues (of the given symmetry)
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are branches of a single multi-valued function. So, large-degree algebraic approximants

that can reproduce several sheets of a multi-valued analytic function starting from

Taylor expansion on the main sheet look promising for another quantum-mechanical

perturbation problems.

Algebraic approximants are expected to be useful also for numerical study of

singularities and an analytic structure of the eigenvalues in a complex plane of coupling

constants that is important for evaluation of transition probabilities in adiabatic

processes (Grozdanov and Solov'ev 1990).
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Figure captions

Figure 1. Dependence of the accuracy on the degree of algebraic approximants on

the principal sheet and on a complex sheet of the function F (�) = ��1 ln(1 + �). For

each curve, the number of summed terms of the series is the same. A typical curve

has a maximum corresponding to the optimum degree marked by a circle. The points

M = (N + 1)1=2 � 1 with equal degrees M and L = [N=(M + 1)] are marked by

asterisks. They appear to lie near the maxima.

Figure 2. Accuracy of algebraic approximants for the ground-state energy of the

quartic anharmonic oscillator at � = 1

2
(a bound state). The accuracy is measured by

a number of correct digits (after the decimal point) de�ned as � lg jEN �Ej. N is the

number of summed terms of the perturbation series.

Figure 3. Accuracy of algebraic approximants for the quartic anharmonic oscillator at

di�erent � on a complex circle j�j = 1=2. To make general trends more clear, the curves

are smoothed by third degree polynomial �ts (cf with �gure 2). Dotted lines are Pad�e

approximants, dashed lines are quadratic approximants, dot-dashed lines are cubic

approximants, double dot-dashed lines are fourth degree approximants, and solid lines

are 20-th degree approximants. Verticale scale is di�erent for di�erent �. At � = �1

2

(a quasistationary state), Pad�e approximants fail to converge. At � = 1

2
exp(3

2
i�) (on

the second sheet of Riemann surface), Pad�e approximants are not de�ned because they

are single-valued functions.

Figure 4. Accuracy of algebraic approximants for the quartic anharmonic oscillator

at small and at large �. The curves are smoothed by third degree polynomial �ts.

Pad�e, quadratic, cubic, fourth degree, and 20-th degree approximants are marked by

the same way as on the �gure 3. At � = 1

10
exp(3

2
i�) and at � = 3

100
exp(3

2
i�),

considerable improvement of convergence of the 20-th degree approximants comparing

with lower degree approximants is related to a complex analytic structure of the energy

function on the second sheet, see the next �gure 5. At � = 100 and at � = 106, the

20-th degree approximants for N = 21L+17 (L = 1; 2; :::) that have correct cubic root

behavior at large � are marked by crosses while diagonal approximants are marked by

circles.
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Figure 5. Positions of several square-root branch points of largest absolute value on

the second sheet of Riemann surface near the line arg� = 3

2
� found numerically by

Shanley (1986). The cut separating this sheet from the main sheet of Riemann surface

goes along the negative real axis (broad line).

Figure 6. Accuracy of algebraic approximants for a long-living quasistationary state

of the quartic anharmonic oscillator. Pad�e, quadratic, and cubic approximants are

marked by the same way as on the �gure 3, partial sums are marked by a solid

line. Accuracy of quartic and higher degree approximants is a little better than cubic

approximants so that the di�erence would be hardly visible in the scale of this �gure.

Figure 7. Accuracy of algebraic approximants for the cubic anharmonic oscillator.

The curves are smoothed by the third degree polynomial �ts. Dashed lines are

quadratic approximants, dot-dashed lines are cubic approximants, double dot-dashed

lines are fourth degree approximants, dotted lines are �fth degree approximants, and

solid lines are 20-th degree approximants. Pad�e approximants don't converge because

the state is quasistationary (with a complex energy), but Pad�e approximants are real.

The point � = 1

4
exp(5

2
i�) is on the second sheet of Riemann surface. The energy at

� = 1

4
exp(5

2
i�) is closely related to the energy at � = 1

4
according to (34). However,

the accuracy of approximants at � = 1

4
exp(5

2
i�) does not reach that at � = 1

4
. The

case � = 100 refers to a strong coupling regime. The 20-th degree approximants at

N = 21L+ 15 (L = 1; 2; :::) that have correct �1=5 behavior at �!1, are marked by

crosses while diagonal approximants are marked by circles.

Figure 8. Accuracy of algebraic approximants for the the sextic anharmonic oscillator

at � = 1

10
. Theoretically, Pad�e approximants converge, but in practice their

convergence is very slow. Quadratic, cubic, and fourth degree approximants converge

much faster, although the convergence is uneven.

Figure 9. Accuracy of diagonal algebraic approximants for the octic anharmonic

oscillator at � = 1

100
. Diagonal Pad�e approximants converge to 0.5272 (99.1% of the

exact energy), diagonal quadratic approximants converge to 0.532105 (100.0002%),

and diagonal cubic approximants appear to converge to 0.532103926 (99.9999997%).


