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The convergence of large-order expansions ind51/D, whereD is the dimension-
ality of coordinate space, for energiesE(d) of Coulomb systems is strongly af-
fected by singularities atd51 andd50. Pade´–Borel approximants with modifi-
cations that completely remove the singularities atd51 and remove the dominant
singularity atd50 are demonstrated. A renormalization of the interelectron repul-
sion is found to move the dominant singularity of the Borel functionF(d)
5( jEj8/ j !, whereEj8 are the the expansion coefficients of the energy with singu-
larity structure removed atd51, farther from the origin and thereby accelerate
summation convergence. The ground-state energies of He and H2

1 are used as test
cases. The new methods give significant improvement over previous summation
methods.ShiftedBorel summation usingFm(d)5( jEj8/G( j 112m) is considered.
The standard deviation of results calculated with different values of the shift pa-
rameterm is proposed as a measure of summation accuracy. ©1998 American
Institute of Physics.@S0022-2488~98!04210-8#

I. INTRODUCTION

Large-order perturbation theory in 1/D, whereD is the dimensionality of coordinate spac
was proposed by Mlodinow1,2 as an alternative to variational methods and coupling-cons
perturbation theories for solving the Schro¨dinger equation. This ‘‘dimensional perturbatio
theory’’ has some appealing features. The first-order theory gives a semiquantitative descrip
electron correlation3–11 and other subtle many-body effects12 and it is relatively easy to calculat
the perturbation expansion to very high order, using recursion relations.13,14 1/D expansions have
now been calculated through 30th order for two-electron atoms15 and tenth order for three-electro
atoms.16 Large-order expansions have also been calculated for the H atom in an external fie17–21

and for the H2
1 molecule.19,22,23

The expansions for energies of Coulombic systems are, in general, divergent, due to
larities in the energy functionE(d), with d51/D treated as a continuous complex variable. O
type of singularity is a pole inE(d) that results from the fact that for certain integer values ofD
the expectation value of the Coulomb potential can diverge at particle coalescences.24 This sin-
gularity can be accurately characterized and removed either by subtraction25 or by rescaling,5,26

making partial sums of the expansion appear rapidly convergent at low orders. A second c
teristic type of singularity is a complicated branch point or essential singularity atd50, which
leads to divergence at higher orders.15 This singularity can in principle be explained by an insta
ton analysis.27–29 The zeroth-order limit of the perturbation theory corresponds to localizatio
an extremum of an effective potential that is the sum of the three-dimensional Coulomb po
and a centrifugal potential that comes from the dimensional continuation of the kinetic e
operator. For applications to bound systems, one generally chooses an extremum that corr
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b!Current address: Dept. of Physics, Columbia University, 538 W. 120th St., New York, NY 10027.
c!Permanent address: S. I. Vavilov State Optical Institute, 199034 St. Petersburg, Russian Federation.
51120022-2488/98/39(10)/5112/11/$15.00 © 1998 American Institute of Physics
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to a stable minimum. However, there typically exist sub-barrier trajectories in imaginary time
allow for tunneling out of the minimum. This causes the zeroth-order limit to be singular, with
energy expansion coefficients diverging as a factorial.

Summation methods in which the Coulombic poles are removed fromE(d) and then the
remainder expansion is summed with Pade´ approximants or Pade´–Borel approximants yield ap
parently convergent results at all orders.15,30,31 Our purpose here is to refine those methods
improve the rate of convergence. Our strategy is to renormalize the Hamiltonian, by redefini
dimensional continuation in such a way that the effect of the singularity at the origin is mitig
and to improve the techniques for modeling the singularities. In addition, we develop a meth
estimating the accuracy of a given summation approximant. He and H2

1 are used as test cases.

II. SUMMATION APPROXIMANTS

The asymptotic expansion in 1/D for the electronic energy of an atom or molecule has
form

E~d!;d2(
j 50

k

Ejd
j , ~1!

whered51/D. There are various algorithms for computing the expansion coefficientsEj , but the
most efficient, especially for problems with more than one degree of freedom, seems to
matrix method of Dunnet al.14 The direct evaluation of Eq.~1! at d51/3 using partial sums, from
truncation at givenk, typically gives slow convergence at low orders and rapid divergence at
order.

For ground states of Coulombic systems,E has an expansion aboutD51 in the form24

E~d!;a22~D21!221a21~D21!211¯ . ~2!

For a one-electron atom with nuclear chargeZ, the first term in Eq.~2! constitutes the exac
solution, with a2252Z2. For two-electron atomsa22 is equal to the ground-state energy of
two-electron Schro¨dinger equation in which the Coulomb potentials have been replaced with
functions.24,32 The exact solution for this equation was obtained by Rosenthal33 for arbitraryZ.

To remove the effects of the poles one can either rescale the expansion,5,26 by multiplying it
by (12d)2, or explicitly subtract out thed expansions of the poles.25,30 If the residues are known
exactly then subtraction works best. We consider two approaches for the case wherea22 is known
but a21 is not known: subtracting the second-order pole and rescaling to remove the first
pole,

E~d!;d2@a22~12d!221~12d!21E8~d!#, ~3a!

E8~d!5(
j 50

k

d jEj8 , Ej85Ej2Ej 212a22 , E2150, ~3b!

or subtraction of both poles,

E~d!;d2@a22~12d!221a21~12d!211E8~d!#, ~4a!

E8~d!5(
j 50

k

d jEj8 , Ej85Ej2~ j 11!a222a21 , ~4b!

with

a215 lim
d→1

(
j 50

k

d j~Ej2Ej 212a22!. ~5!
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Equation~5! can be evaluated using Pade´ summation.30 The use of approximants based on Eqs.~4!
has been calledhybrid summation,25 since it is the combination of an expansion aboutd51 and
an expansion aboutd50. We will refer to the approach in Eqs.~3! asrescaled hybridsummation.

It is possible to obtain convergent results by summing the expansions forE8 with Padé
approximants or with Pade´-Borel approximants. The latter give a somewhat better converg
rate. Here we employ a more general technique28 that will be useful not just for summing th
energy expansion but also for analyzing the singularity structure atd50 and for estimating
summation accuracy. Consider a functionFm(d) with asymptotic expansion

Fm~d!; (
j 5 j 0

k

d jFm, j , Fm, j5Ej8/G~ j 112m!, ~6!

wherej 0 is the smallest integer greater than or equal tom. This function is related toE8(d) by the
transform

E8~d!5 (
j 50

j 021

Ej8d
j1e2~m21!i j lim

y→`
E

0

yei j

x2mFm~dxei j!exp~2xei j!dx, ~7!

with the anglej chosen so thatF(dxei j) is nonsingular along the path of integration and2p/2
,j,p/2. If m50 then Eq.~7! is the usual Borel sum. For the functionFm in Eq. ~7! we will
substitute Pade´ approximants of the expansion in Eq.~6!. For mÞ0 we will refer to the summa-
tion method asshiftedPadé–Borel summation.

III. RENORMALIZATION

A. Charge renormalization

The standard approach to analytic continuation of the Hamiltonian to arbitraryD is to con-
tinue the kinetic energy operator toD dimensions while keeping the physical, three-dimension
definition for the potential energy operator.32,34 If the energy is expressed in atomic units mul
plied by Z2/D2, then the effective potential for anS state of the two-electron atom at largeD is

Veff~r 1 ,r 2 ,u!5Vcentr1VCoul, ~8!

Vcentr5S 126d18d2

8 sin2 u
2

1

8D S 1

r 1
2 1

1

r 2
2D , ~9!

VCoul52r 1
212r 2

211l ~r 1
21r 2

222r 1r 2 cosu!21/2. ~10!

Vcentr is the centrifugal potential from theD-dimensional kinetic energy operator whileVCoul is the
three-dimensional Coulomb potential, withl51/Z. This effective potential has a stable glob
minimum, with r 15r 2 , as long asl is less than a critical valuelc'0.8144. For H2, with l
51, this symmetric extremum is a saddle point,35,36 and if this point is used for the zeroth orde
of the perturbation theory, then the coefficients of the energy expansion will be complex num
Similarly, the symmetric large-D extrema for the H2

1 and H2 molecules also correspond to sadd
points.35,37,38

A strategy for calculating 1/D expansions for systems that are unstable in the large-D limit
was proposed in Ref. 39, using the fact that the definition of the dimensional continuation
Hamiltonian is arbitrary as long as it gives the correct operator atD53. If we renormalize the
repulsive part of the Coulomb potential, by replacing it with a continuous function ofd such that
the repulsion becomes weaker asd approaches zero, it is possible to ensure that the symm
extremum will be a minimum. This approach is closely related to the renormalized perturb
theory developed by Killingbeck for anharmonic oscillators.40

Charge renormalization was applied to large-order perturbation theory for H2 in Ref. 41. The
parameterl in Eq. ~10! was replaced with the linear polynomial

l~d!5l01l1d, l153~Z212l0! ~11!
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with l0 treated as a free parameter.l1 is defined so thatl(1/3)51/Z. ~This modification ofl
does not affect the scale factor in the energy units. We continue to use atomic units multipl
Z2/D2, whereZ is independent ofD.! The hybrid expansion, Eq.~4a!, with Pade´–Borel summa-
tion of E8 gave convergent results for H2 for any value ofl0 less thanlc . The fastest conver-
gence was forl0'(2Z)21, which gave a more accurate result at given order for the ground-
energy of H2 than had been obtained15 for the ground-state energy of He with unrenormalizedl.
This rapid convergence for H2 suggests that the use of ad-dependent potential energy operat
could be used to improve the convergence even for systems that are stable at largeD.

Figure 1 shows the effect on the convergence for He of settingl05(2Z)21. Since there is a
fair amount of scatter in the convergence from order to order, we have plotted cubic polyn
fits to more clearly show the convergence patterns. The dashed curves correspond to
approximants, based on Eq.~4a!, while the solid curves correspond to rescaled hybrid appr
mants, based on Eq.~3a!. The expansion ofE8 was summed with unshifted Pade´–Borel approxi-
mants. We define the ‘‘accuracy’’ of a summation approximantSk at given orderk as

a~k!52 log10u~Sk2Eexact!/Eexactu, ~12!

which is a continuous measure of the number of accurate digits.

FIG. 1. Cubic polynomial fits of the number of accurate digits from summation approximants for the ground state
of He, as a function of order, with ‘‘accuracy’’ defined as2 loguDE/Eexactu, whereDE5Eapprox2Eexact, with Eexact from
Ref. 42. The dashed curves are from unshifted hybrid Pade´–Borel approximants while the solid curves are from unshift
rescaled hybrid Pade´–Borel approximants. Results are shown forl051/2 ~unrenormalized! and forl051/4, as labeled,
with l(d)5l01l1d.
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Several characteristic trends are evident. First, it is clear that the rescaled hybrid summa
the better of the two summation methods. It is possible to somewhat improve the accuracy
unscaled hybrid approximants by applying Shanks extrapolation, with some subjective judge
to the Pade´-approximant sequences fora21 , but the results remain less dependable than th
from the rescaled hybrid method. The general shapes of the rescaled hybrid curves are re
tative of those over a wide range ofl0 . They begin with an almost linear increase in the num
of accurate digits. Then, upon reaching an accuracy plateau of between approximately 6
digits the rate of convergence slows significantly. Forl0,0.8/Z there is a return to a more rapi
convergence rate, beginning at around 25th order. Figure 2 shows the initial slope ofa(k) as a
function of l0 . The increasing rate of convergence is balanced at very low order by the fac
the zeroth-order accuracy decreases forl0 far from the physical value.~The zeroth-order result is
equal to the exact energy forl0'0.46, which corresponds to a dip in Fig. 2.! Nevertheless, there
is for the He atom a clear advantage to choosingl0 in the general neighborhood of 0.5/Z.

The functional form chosen forl~d! is essentially arbitrary. In addition to the linear polyn
mial, Eq. ~11!, we have considered a quadratic polynomial,

l~d!5l01l1d1l2d2, ~13!

l15
9

2Z
24l02

1

2
l~1!, l253l01

3

2
l~1!2

9

2Z
, ~14!

with l~1! andl05l(0) treated as free parameters. This makes it possible to control the beh
at both of the solvable limits,d50 andd51. The position of the dominant singularities in th
Borel function depend only on the value ofl0 . Therefore the rate of convergence of the summ
tion approximants depends less strongly onl~1! than onl~0!. We find in practice that certain
choices ofl~1! do improve the convergence at low and intermediate orders, especially for H2, for
which the linearl~d! can imply a very large value forl~1!.

B. Effect on singularity structure

Analysis of the expansion coefficients for the ground-state energy of two-electron atom
shown15 that the dominant singularities ofF0(d) ~i.e., the singularities nearest to the origin of t
complex d plane! are a complex-conjugate pair of square-root branch points in the neg
half-plane. Let2be6 ib be their locations. Then the coefficients of the asymptotic expansiond

FIG. 2. The rate of convergence at low order for unshifted rescaled hybrid Pade´–Borel approximants for the ground stat
energy of He, as a function of the renormalization parameterl0 , usingl(d)5l01l1d. The rate of convergence is define
here as the parametera1 from the three-parameter least-squares fit of the accuracya(k)5a01a1k1a2k21a3k3 with a0

constrained to equal the accuracy ofS0.
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of the expressionG(d1beib)1/21G* (d1be2 ib)1/2, whereG is a constant, will in the limit of
large order be equal to the coefficientsF0,j of the asymptotic expansion ofF0 , Eq. ~6!. Thus, in
the limit of large j we have

F0,j;2uGub1/2~21! j
G~ j 21/2!

G~21/2!G~ j 11!
b2 j cosF S j 2

1

2Db2arg GG . ~15!

Now compare this to the function

f ~d!5g~d1beib!211g* ~d1be2 ib!21, ~16!

which has the expansion coefficients

f j52ugub21~21! jb2 j cos@~ j 11!b2arg g#. ~17!

If we setg5221p21/2b3/2uGuei (argG13b/2), then f j;F3/2,j , which implies that the dominant sin
gularities ofF3/2(d) will be first-order poles at the same locations as the dominant branch p
in F0(d).

The effect on convergence of the renormalization can be understood in terms of the eff
the locations of the dominant singularities ofFm(d). A convenient method for determining thes
locations is to examine the singularities of the Pade´ approximants ofFm . Previously15 we used the
quadratic Pade´ approximants ofF0 for this purpose, noting the positions of the branch poi
nearest the origin. Once the branch points are approximately identified in this manner, the
can be refined by noting the positions of the corresponding poles in the linear Pade´ approximants
of F3/2, which stabilize somewhat faster.

We find that the positions of these singularities depend only on the value ofl0 . In general,
there appear to be three distinct complex-conjugate pairs of singularities in the Borel func
For l0 close tolc the dominant singularities are in the positive half plane, but asl0 decreases this
pair rapidly moves away from the origin. Forl0,0.8 the dominant singularities are the pair in t
negative half plane. Figure 3 shows the real and imaginary parts of this pair. The steady mov
away from the origin asl0 decreases is presumably related to the improvement in convergen
the limit l0→0 the singularities in the Borel function must disappear, sinceE8(d) is then non-
singular. It is interesting to note that the mechanism for this disappearance is for the pre
multiplying the dominant singularities to go to zero, rather than for the positions of the sing
ties to move out to infinity. The third pair of singularities has an imaginary part of6p with a
small real part that depends weakly onl0 . This is far enough from the origin that these can
expected to have no significant effect on the rate of convergence.

FIG. 3. Real part~solid curve! and imaginary part~dashed curve! of one of the dominant singularities in the Bore
functions of the two-electron isoelectronic series, as a function ofl0 . The other dominant singularity is at the comple
conjugate of this location.
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C. Effect on roundoff error

The recursive computation of the energy expansion coefficientsEk is somewhat unstable to
roundoff error,14,15 on account of their factorial divergence. However, in the hydrogenic limZ
→` ~i.e., l→0! the energy expansion is convergent, with only a linear increase inEk with k. At
small but nonzerol the perturbation theory is still divergent but the growth of the expans
coefficients is nearly linear until very high order. This apparently comes about through ma
cancellations of intermediate quantities that grow factorially. The result is extreme loss of
sion near the hydrogenic limit.

The number of significant figures in theEk decreases approximately linearly withk. It was
stated previously15,31 that roundoff error in theEk becomes manifest in theSk at about the value
of k for which the precision of theEk intersects the accuracy of theSk . More careful analysis
reveals that this rule is generally valid but somewhat conservative. The actual propagation o
in the summation approximants is complicated, with some approximants much less sensitiv
others and thereby retaining their accuracy beyond the intersection. Such approximants
identified empirically by adding to theEk random error of a given magnitude.

For the renormalized calculations we find that the rate of precision loss depends mainly
value of the parameterl0 , increasing asl0 decreases. We have used quadruple-precision a
metic ~32 decimal digits! for computing theEk in the calculations reported here, so that t
roundoff error is always less than the convergence accuracy.

D. Renormalization for diatomic molecules

Within the Born–Oppenheimer approximation the Hamiltonian is not homogeneous, sin
internuclear distanceR is treated as a parameter rather than as a dynamical variable. Ther
transformation to atomic units multiplied byD22 replacesR with the D-dependent parameterR̃
5R/D2. In a recent study of H2

1 it was shown that renormalization of thisD dependence is a
simple and effective way to improve the convergence of the 1/D expansion.23 One replacesR̃ with

R̃5
2~31b!

~D21!~D1b!
R, ~18!

with b treated as a free parameter.~The factor ofD21 is included to give a reasonableD→1
limit.! An important effect of this renormalization is to ensure that theD→` limit corresponds to
an effective potential with a single global minimum. Otherwise the molecule undergoes a
metry breaking transition to a double-well problem asR increases, which significantly degrade
the convergence of the large-order expansion. For many-electron diatomic molecules a ren
ization of the interelectron repulsion, completely analogous to the procedure for atoms in
III A, could be used to attenuate the effect on convergence of the interelectron repuls
addition to theR renormalization that prevents the symmetry breaking.

IV. ESTIMATING THE ACCURACY OF THE SUMMATION APPROXIMANTS

We have calculated the summation approximantsSk using a range of integer and half-integ
values for the shift parameterm in the Borel functionFm . The best results tend to correspond
m50, 1/2, 1, and 3/2, but which of these four is best at given order appears to be ra
Therefore, to obtain an estimate of the accuracy of the summation at given orderk we compute the
standard deviationsk from the meanS̄k of the four differentSk .

Figure 4 shows results for the He ground state energy withl050.5/Z. The dotted curve
shows the actual accuracy of the mean. The solid curve shows2 log10usk /S̄ku. The largest dis-
agreements between the actual accuracy and this estimate occurs at very high orders, w
mean tends to be significantly more accurate than the individual approximants and the esti
too conservative.

V. DARBOUX–BOREL APPROXIMANTS

The singularity structure of the Borel functionF(d) for H2
1 is similar to that for the two-

electron atom except that the dominant singularity is typically a square-root branch point th
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on the negative real axis.22,29 Because this problem is separable, in ellipsoidal coordinates,
straightforward to derive an exact solution for the locationd0 of the branch point.29 Since this
singularity is the nearest to the origin in the complex plane, it follows from Darboux’s theor43

that the expressiong(d)(12d/d0)1/21h(d), whereg andh are nonsingular forudu<ud0u, has the
same expansion coefficients in the limit of large order as the actual expansion ofF. This suggests
the use of Darboux approximants,44

F [L,N/M ]~d!5
RN~d!

QM~d!
~12d/d0!1/21

PL~d!

QM~d!
, ~19!

wherePL , QM , andRN are polynomials of degreesL, M , andN, respectively. These polyno

FIG. 4. Accuracy of rescaled hybrid Pade´–Borel approximants for the ground state energy of He, as a function of ord
the perturbation expansion. The points are determined using Borel functionsFm with the values of the shift paramete

indicated as follows:1, m50; h, m521/2; n, m521; L, m523/2. The dotted curve shows2 log10u(S̄k

2Eexact)/Eexactu, where S̄k is the mean of the four summation approximants at orderk. The solid curve shows

2 log10usk /S̄ku, wheresk is the standard deviation from the mean of the four approximants at orderk.
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mials can be determined by settingF [L,M /N] equal to the expansion ofF, expanding the square
root, multiplying through byQM , and then solving the resulting set of linear equations.

Figure 5 compares accuracies of Darboux–Borel and Pade´–Borel approximants for the
ground-state energy of H2

1 . These results correspond to internuclear distanceR52, which is very
close to the equilibrium bond length.~The renormalizedD-dimensional Hamiltonian for this
problem is described in Ref. 23.! There is noticeable improvement in accuracy from the Darb
approximants. This is seen as well for other values ofR.

VI. DISCUSSION

Our central results are the following:~1! Summation accuracy depends significantly on
moving the Coulombic poles at theD→1 limit, and rescaling removes the first-order pole mo
effectively than subtraction using an approximate residue.~2! Renormalization of the
D-dimensional Hamiltonian, by multiplying the interelectron potential with a polynomial ind can
significantly improve the rate of convergence.~3! Comparison of results from shifted Borel tran
forms, given by Eqs.~6! and ~7!, yields a standard deviationsk that provides a reliable estimat
of the summation accuracy at given orderk. A reasonable summation procedure is to carry ou
series of inexpensive moderate-order calculations using a quadraticl~d! over the full range ofl0

values, with some arbitrary value ofl~1!, in order to determine an approximate range ofl0 that
can be expected to yield the fastest convergence. In the case of He, for example, a plot su
Fig. 2 would suggest 0.15<l0<0.25. Then additional moderate-order calculations could be u
to determine an optimal pair ofl0 andl~1! to be used in the expensive large-order calculati

FIG. 5. Accuracy of rescaled hybrid Darboux–Borel approximants~¹! and rescaled hybrid Pade´–Borel approximants~* !
for the ground state energy of H2

1 with internuclear distanceR52, as a function of order in the perturbation expansion. T
Borel summation is unshifted.
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One could smooth the convergence of the approximant sequence by using the meanS̄k of various
shifted approximants, eliminatingS̄k that have largesk . For example, ifs27 is greater thans26,
as in Fig. 4, thenS̄26 would be retained as the 27th-order result.

We find that the best two-parameter fit of summation accuracy versus order, for two-ele
atoms and for H2

1 , is a(k)5a01a1k1/2. However, there appears to be a systematic devia
from this behavior, with a leveling off of accuracy at intermediate orders followed by an incr
at higher orders, which led us to use cubic polynomials for the fits in Fig. 1. For He the plate
at approximately eight significant figures. This effect was noted in Ref. 15, for unrenorma
expansions, and was attributed to the need to model more than just the dominant singularity
Borel function. For He one obtains approximately three significant figures by explicitly inclu
the poles atd51, and apparently, seven figures from modeling also the dominant branch po
the Borel function. This explanation is supported by the behavior of the Darboux–Borel su
tion for H2

1 in Fig. 5, which explicitly includes the square-root branch point. In that case the
rapid convergence to almost seven figures at 14th order but then it is not until 29th order th
convergence resumes. The plateau for the Pade´–Borel results is less distinct, presumably becau
at intermediate orders the Pade´ approximants are still refining the description of the branch po
while also attempting to decipher other singularity structure. By order 27 the Pade´–Borel accuracy
is about equal to the Darboux–Borel accuracy.

We have shown results only for ground states, but in general we expect similar singu
structure, and hence similar convergence behavior, for the lowest eigenstate of any given s
try. With other excited states there are branch points in theenergyfunctionE(d).31 Although not
the dominant singularities, in practice they dominate the convergence behavior until very
order. For example, it has been estimated31 that the asymptotic behavior due to the singularity
the origin for the 1s2s 1S state of He will not assert itself until 88th order. In that case Bo
summation is not very effective, and it is more appropriate to use a summation method de
to model the apparent dominating singularities.

Recent tenth-order calculations for the three-electron atom16 show convergence behavior a
most identical to that for two-electron atoms. It remains to be seen if this will hold as we
four-electron atoms. Loeser6 has formulated the 1/D expansion forS states of all atoms in the
periodic table. However, with four electrons there are ten independent internal coordinates a
D but only 9 atD53. Therefore it is not clear that Loeser’s theory will converge to the phys
solution when taken to large order. Such coordinate redundancies proliferate quadratically
number of electrons increases. An alternative formulation that avoids this situation is ‘‘pa
dimensional continuation, applied recently in a study of triatomic molecular rotation spectra45 In
that case one body-fixed axis was allowed to rotate inD dimensions while the other axis wa
treated as rotating about the first in only three dimensions. Some sort of related procedure
in principle, give aD-dependent Hamiltonian with the physical number of coordinates.

Probably a more serious obstacle to applying the 1/D expansion to many-electron systems
the rapid increase in computational cost with increasing numbers of internal coordinates.14 With
larger systems it will be necessary to introduce approximations, such as separability assump46

or basis-set truncations. The tradeoff will be between a small systematic error, from a large
inexact theory, and a random, but possibly larger, error from truncating the exact theory at
order.
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