JOURNAL OF MATHEMATICAL PHYSICS VOLUME 39, NUMBER 10 OCTOBER 1998

Improving the convergence and estimating the accuracy
of summation approximants of 1/ D expansions

for Coulombic systems

Melchior O. Elout, David Z. Goodson,? Carl D. Elliston,” Shi-Wei Huang,

and Alexei V. Sergeev®
Department of Chemistry, Southern Methodist University, Dallas, Texas 75275

Deborah K. Watson
Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019

(Received 30 March 1998; accepted for publication 4 May 1998

The convergence of large-order expansionginl/D, whereD is the dimension-
ality of coordinate space, for energi€gs) of Coulomb systems is strongly af-
fected by singularities af=1 and §=0. Pade-Borel approximants with modifi-
cations that completely remove the singularitie®atl and remove the dominant
singularity at6=0 are demonstrated. A renormalization of the interelectron repul-
sion is found to move the dominant singularity of the Borel functi®fs)
=3E//j!, whereE;] are the the expansion coefficients of the energy with singu-
larity structure removed af=1, farther from the origin and thereby accelerate
summation convergence. The ground-state energies of He sratéHused as test
cases. The new methods give significant improvement over previous summation
methods ShiftedBorel summation using () ==; Ej’/l“(j +1-—m) is considered.

The standard deviation of results calculated with different values of the shift pa-
rameterm is proposed as a measure of summation accuracy19@8 American
Institute of Physics.S0022-248808)04210-9

I. INTRODUCTION

Large-order perturbation theory in[1/ whereD is the dimensionality of coordinate space,
was proposed by Mlodinok# as an alternative to variational methods and coupling-constant
perturbation theories for solving the Schinger equation. This “dimensional perturbation
theory” has some appealing features. The first-order theory gives a semiquantitative description of
electron correlatioti'* and other subtle many-body effettsind it is relatively easy to calculate
the perturbation expansion to very high order, using recursion reldfidfi4/D expansions have
now been calculated through 30th order for two-electron atoare tenth order for three-electron
atoms:® Large-order expansions have also been calculated for the H atom in an exterhat3teld
and for the H molecule!®?2%3

The expansions for energies of Coulombic systems are, in general, divergent, due to singu-
larities in the energy functio& (), with 6=1/D treated as a continuous complex variable. One
type of singularity is a pole ife( ) that results from the fact that for certain integer value®of
the expectation value of the Coulomb potential can diverge at particle coalesééitus.sin-
gularity can be accurately characterized and removed either by subtfaaiioby rescaling;?®
making partial sums of the expansion appear rapidly convergent at low orders. A second charac-
teristic type of singularity is a complicated branch point or essential singularifi=&t, which
leads to divergence at higher ordét§ his singularity can in principle be explained by an instan-
ton analysi€’~2° The zeroth-order limit of the perturbation theory corresponds to localization at
an extremum of an effective potential that is the sum of the three-dimensional Coulomb potential
and a centrifugal potential that comes from the dimensional continuation of the kinetic energy
operator. For applications to bound systems, one generally chooses an extremum that corresponds
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to a stable minimum. However, there typically exist sub-barrier trajectories in imaginary time that
allow for tunneling out of the minimum. This causes the zeroth-order limit to be singular, with the
energy expansion coefficients diverging as a factorial.

Summation methods in which the Coulombic poles are removed #¢#) and then the
remainder expansion is summed with Paggroximants or Paddorel approximants yield ap-
parently convergent results at all ordé*$?3! Our purpose here is to refine those methods to
improve the rate of convergence. Our strategy is to renormalize the Hamiltonian, by redefining the
dimensional continuation in such a way that the effect of the singularity at the origin is mitigated,
and to improve the technigues for modeling the singularities. In addition, we develop a method for
estimating the accuracy of a given summation approximant. He gndrél used as test cases.

II. SUMMATION APPROXIMANTS

The asymptotic expansion in/for the electronic energy of an atom or molecule has the
form

k

E(5)~ 522‘,0 E; &, 1)

wheres=1/D. There are various algorithms for computing the expansion coeffidgntbut the
most efficient, especially for problems with more than one degree of freedom, seems to be the
matrix method of Dunret al* The direct evaluation of Eq1) at 5= 1/3 using partial sums, from
truncation at giverk, typically gives slow convergence at low orders and rapid divergence at high
order.

For ground states of Coulombic systerishas an expansion aboDt=1 in the fornf*

E(8)~a_,(D—1)"2+a_y(D—1)"1+---. 2

For a one-electron atom with nuclear chaigethe first term in Eq.(2) constitutes the exact
solution, witha_,=2Z?. For two-electron atoms_, is equal to the ground-state energy of a
two-electron Schidinger equation in which the Coulomb potentials have been replaced with delta
functions®*3? The exact solution for this equation was obtained by Rosefitfal arbitrary Z.

To remove the effects of the poles one can either rescale the exparSioynmultiplying it
by (1— 8)?, or explicitly subtract out theé expansions of the polés:If the residues are known
exactly then subtraction works best. We consider two approaches for the caseawhé&nown
buta_; is not known: subtracting the second-order pole and rescaling to remove the first-order
pole,

E(8)~ 67 a_5(1-8) 2+ (1-8) 'E'(9)], (3a)

k
E’(5)=j205jEj’, E/=E—Ej_;—a_,, E_;=0, (3b)

or subtraction of both poles,

E(8)~d69a_,(1-6) 2+a_(1-6) +E'(9)], (4a)
k
E'(a)z_ZO SJE/, E/=E—(j+Da_,—a_,, (4b)
=
with
k
a_;=lm X 8I(E,—E;_;—a_,). (5)

5-11=0
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Equation(5) can be evaluated using Paslenmatiort® The use of approximants based on Eds.
has been calletlybrid summatior® since it is the combination of an expansion abéstl and
an expansion about= 0. We will refer to the approach in Eq&) asrescaled hybricdsummation.

It is possible to obtain convergent results by summing the expansiong’faith Pade
approximants or with PadBorel approximants. The latter give a somewhat better convergence
rate. Here we employ a more general technf§ukat will be useful not just for summing the
energy expansion but also for analyzing the singularity structuré=a® and for estimating
summation accuracy. Consider a functieg(s) with asymptotic expansion

k
Fu(8)~ 2 8Fmj, Fm;=E/T(j+1-m), (6)

i=io

wherej is the smallest integer greater than or equahtorhis function is related t&’ () by the
transform

jO_l P& ) )
E'(8)= D, E/8l+e (M Vi lim fye X~ (Ox€ &) exp( —x€e ) dx, (7)
jZO y—o0 0

with the angle¢ chosen so thafE (8xe'¢) is nonsingular along the path of integration andr/2
<§é<mw/2. If m=0 then Eq.(7) is the usual Borel sum. For the functiéty, in Eq. (7) we will
substitute Padapproximants of the expansion in E@). For m#0 we will refer to the summa-
tion method ashiftedPade-Borel summation.

Ill. RENORMALIZATION
A. Charge renormalization

The standard approach to analytic continuation of the Hamiltonian to arblraésyto con-
tinue the kinetic energy operator B dimensions while keeping the physical, three-dimensional,
definition for the potential energy operafr’ If the energy is expressed in atomic units multi-
plied by Z2/D?, then the effective potential for & state of the two-electron atom at larfeis

Veit(r1,72,0) = Veeni Veous (8)

B 1-65+88° 1
centt™| “8sit § 8

1 N 1 9
G ©
Veou=—T1 =1, 2N (r2+r3—2r;r, cos ) "2 (10

VeentriS the centrifugal potential from th2-dimensional kinetic energy operator while, is the
three-dimensional Coulomb potential, with=1/Z. This effective potential has a stable global
minimum, withr,=r,, as long as\ is less than a critical valug ,~0.8144. For H, with A
=1, this symmetric extremum is a saddle pamt®and if this point is used for the zeroth order
of the perturbation theory, then the coefficients of the energy expansion will be complex numbers.
Similarly, the symmetric larg® extrema for the B and H, molecules also correspond to saddle
points3>37:38

A strategy for calculating D expansions for systems that are unstable in the IBrdienit
was proposed in Ref. 39, using the fact that the definition of the dimensional continuation of the
Hamiltonian is arbitrary as long as it gives the correct operatdat3. If we renormalize the
repulsive part of the Coulomb potential, by replacing it with a continuous functiahsofch that
the repulsion becomes weaker &sipproaches zero, it is possible to ensure that the symmetric
extremum will be a minimum. This approach is closely related to the renormalized perturbation
theory developed by Killingbeck for anharmonic oscillattfs.

Charge renormalization was applied to large-order perturbation theory fan Ref. 41. The
parametei in Eq. (10) was replaced with the linear polynomial

MO =Ngt N8, N=3(Z"1=\p) (12



J. Math. Phys., Vol. 39, No. 10, October 1998 Elout et al. 5115

11 I I 1 1 I

10

accuracy
[¢)]

1 I I 1 1 I
0 5 10 15 20 25 30

order of perturbation

FIG. 1. Cubic polynomial fits of the number of accurate digits from summation approximants for the ground state energy
of He, as a function of order, with “accuracy” defined adog|AE/E,,.|, whereAE = E o500 Eexacty With Egyag from

Ref. 42. The dashed curves are from unshifted hybrid PBdee| approximants while the solid curves are from unshifted
rescaled hybrid PadéBorel approximants. Results are shown Xge=1/2 (unrenormalizepland for\,=1/4, as labeled,

with N(8)=No+ N1 6.

with A treated as a free parametar, is defined so thak (1/3)=1/Z. (This modification ofA
does not affect the scale factor in the energy units. We continue to use atomic units multiplied by
Z?/D?, whereZ is independent ob.) The hybrid expansion, E¢4a), with Pade-Borel summa-
tion of E' gave convergent results for Hor any value of\ less tham\.. The fastest conver-
gence was fohy~(2Z) "1, which gave a more accurate result at given order for the ground-state
energy of H than had been obtainEfor the ground-state energy of He with unrenormalized
This rapid convergence for Hsuggests that the use oféadependent potential energy operator
could be used to improve the convergence even for systems that are stable &t.large

Figure 1 shows the effect on the convergence for He of seltijzg(2Z) 1. Since there is a
fair amount of scatter in the convergence from order to order, we have plotted cubic polynomial
fits to more clearly show the convergence patterns. The dashed curves correspond to hybrid
approximants, based on E@la), while the solid curves correspond to rescaled hybrid approxi-
mants, based on E¢3a). The expansion oE’ was summed with unshifted PaeBorel approxi-
mants. We define the “accuracy” of a summation approximgnat given ordelk as

a(k)=— IOglO| (S— EexacI)/EexacL (12

which is a continuous measure of the number of accurate digits.
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FIG. 2. The rate of convergence at low order for unshifted rescaled hybrid-Bade! approximants for the ground state
energy of He, as a function of the renormalization paramejeusing\ (8) =\y+\5. The rate of convergence is defined
here as the parametey, from the three-parameter least-squares fit of the accuréky= a+ a k+ a,k?+ azk® with aq
constrained to equal the accuracySpt

Several characteristic trends are evident. First, it is clear that the rescaled hybrid summation is
the better of the two summation methods. It is possible to somewhat improve the accuracy of the
unscaled hybrid approximants by applying Shanks extrapolation, with some subjective judgement,
to the Padeapproximant sequences far_,, but the results remain less dependable than those
from the rescaled hybrid method. The general shapes of the rescaled hybrid curves are represen-
tative of those over a wide range ®f. They begin with an almost linear increase in the number
of accurate digits. Then, upon reaching an accuracy plateau of between approximately 6 and 8
digits the rate of convergence slows significantly. kg 0.8/Z there is a return to a more rapid
convergence rate, beginning at around 25th order. Figure 2 shows the initial slofi&)os a
function of \y. The increasing rate of convergence is balanced at very low order by the fact that
the zeroth-order accuracy decreaseskipfar from the physical valugThe zeroth-order result is
equal to the exact energy fap~0.46, which corresponds to a dip in Fig) Rlevertheless, there
is for the He atom a clear advantage to choosigdn the general neighborhood of 0z/

The functional form chosen fox(d) is essentially arbitrary. In addition to the linear polyno-
mial, Eq.(11), we have considered a quadratic polynomial,

N(8)=Nog+N10+N,6%, (13

1 3 9
A A= 5MD), A2=3hot+ 3NM1)— 5, (14

=57~

with A(1) and\o=A(0) treated as free parameters. This makes it possible to control the behavior
at both of the solvable limits§=0 and §=1. The position of the dominant singularities in the
Borel function depend only on the value %f. Therefore the rate of convergence of the summa-
tion approximants depends less strongly \qt) than on\(0). We find in practice that certain
choices of\(1) do improve the convergence at low and intermediate orders, especially fdoH
which the lineam\(8) can imply a very large value fox(1).

B. Effect on singularity structure

Analysis of the expansion coefficients for the ground-state energy of two-electron atoms has
showrt® that the dominant singularities &%(5) (i.e., the singularities nearest to the origin of the
complex § plane are a complex-conjugate pair of square-root branch points in the negative
half-plane. Let— Be™'® be their locations. Then the coefficients of the asymptotic expansién in
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FIG. 3. Real part(solid curve and imaginary par{dashed curveof one of the dominant singularities in the Borel
functions of the two-electron isoelectronic series, as a functionyofThe other dominant singularity is at the complex
conjugate of this location.

of the expressioi(5+ Be') Y2+ G* (5+ Be '°)12, whereG is a constant, will in the limit of
large order be equal to the coefficiefitg; of the asymptotic expansion &%, Eq.(6). Thus, in
the limit of largej we have

Fo;~2/G|BY(—1) _razta o co - b—argG (15)
0~ 2GIA T—12rG+1) P J=3|p-argGl.
Now compare this to the function
f(8)=y(6+pe®) 1+ y* (5+pe™ )7, (16)

which has the expansion coefficients

fi=2/%p~ (-1~ cod(j+1)b—argy]. 17

If we sety=2"1m" 12832 G|e!(9G32) thenf;~F,,;, which implies that the dominant sin-
gularities ofF35(6) will be first-order poles at the same locations as the dominant branch points
in Fo(9).

The effect on convergence of the renormalization can be understood in terms of the effect on
the locations of the dominant singularitiesfef,(5). A convenient method for determining these
locations is to examine the singularities of the Pagproximants of,,. Previously® we used the
quadratic Padapproximants ofF, for this purpose, noting the positions of the branch points
nearest the origin. Once the branch points are approximately identified in this manner, the result
can be refined by noting the positions of the corresponding poles in the lineaappximants
of F3», which stabilize somewhat faster.

We find that the positions of these singularities depend only on the valing.dih general,
there appear to be three distinct complex-conjugate pairs of singularities in the Borel functions.
For A close to\ . the dominant singularities are in the positive half plane, butgdecreases this
pair rapidly moves away from the origin. FRp<<0.8 the dominant singularities are the pair in the
negative half plane. Figure 3 shows the real and imaginary parts of this pair. The steady movement
away from the origin a& ; decreases is presumably related to the improvement in convergence. In
the limit A\;— O the singularities in the Borel function must disappear, siBtgd) is then non-
singular. It is interesting to note that the mechanism for this disappearance is for the prefactor
multiplying the dominant singularities to go to zero, rather than for the positions of the singulari-
ties to move out to infinity. The third pair of singularities has an imaginary part of with a
small real part that depends weakly ®p. This is far enough from the origin that these can be
expected to have no significant effect on the rate of convergence.
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C. Effect on roundoff error

The recursive computation of the energy expansion coefficiepis somewhat unstable to
roundoff errort*® on account of their factorial divergence. However, in the hydrogenic Emit
—o (i.e., A—0) the energy expansion is convergent, with only a linear increakg with k. At
small but nonzero\ the perturbation theory is still divergent but the growth of the expansion
coefficients is nearly linear until very high order. This apparently comes about through massive
cancellations of intermediate quantities that grow factorially. The result is extreme loss of preci-
sion near the hydrogenic limit.

The number of significant figures in thg, decreases approximately linearly with It was
stated previousfy! that roundoff error in thé, becomes manifest in th, at about the value
of k for which the precision of th&, intersects the accuracy of ti& . More careful analysis
reveals that this rule is generally valid but somewhat conservative. The actual propagation of error
in the summation approximants is complicated, with some approximants much less sensitive than
others and thereby retaining their accuracy beyond the intersection. Such approximants can be
identified empirically by adding to thE, random error of a given magnitude.

For the renormalized calculations we find that the rate of precision loss depends mainly on the
value of the parametex,, increasing a3, decreases. We have used quadruple-precision arith-
metic (32 decimal digits for computing theE, in the calculations reported here, so that the
roundoff error is always less than the convergence accuracy.

D. Renormalization for diatomic molecules

Within the Born—Oppenheimer approximation the Hamiltonian is not homogeneous, since the
internuclear distanc® is treated as a parameter rather than as a dynamical variable. Therefore,
transformation to atomic units multiplied iy 2 replacesR with the D-dependent paramet&
=R/D?. In a recent study of K it was shown that renormalization of thiz dependence is a

simple and effective way to improve the convergence of tBeepansiorf> One replace® with

2(3+8)

R=b-DD+p ™

(18

with B treated as a free parametéfhe factor ofD—1 is included to give a reasonallr— 1

limit.) An important effect of this renormalization is to ensure that@he « limit corresponds to

an effective potential with a single global minimum. Otherwise the molecule undergoes a sym-

metry breaking transition to a double-well problemRsncreases, which significantly degrades

the convergence of the large-order expansion. For many-electron diatomic molecules a renormal-
ization of the interelectron repulsion, completely analogous to the procedure for atoms in Sec.

Il A, could be used to attenuate the effect on convergence of the interelectron repulsion in

addition to theR renormalization that prevents the symmetry breaking.

IV. ESTIMATING THE ACCURACY OF THE SUMMATION APPROXIMANTS

We have calculated the summation approxima&itsising a range of integer and half-integer
values for the shift parameten in the Borel functionF,,,. The best results tend to correspond to
m=0, 1/2, 1, and 3/2, but which of these four is best at given order appears to be random.
Therefore, to obtain an estimate of the accuracy of the summation at giverkasgecompute the
standard deviatiowr, from the mear5, of the four differentS, .

Figure 4 shows results for the He ground state energy Witk 0.5/Z. The dotted curve
shows the actual accuracy of the mean. The solid curve sholeg,jo/S|. The largest dis-
agreements between the actual accuracy and this estimate occurs at very high orders, where the
mean tends to be significantly more accurate than the individual approximants and the estimate is
too conservative.

V. DARBOUX-BOREL APPROXIMANTS

The singularity structure of the Borel functidf(5) for H, is similar to that for the two-
electron atom except that the dominant singularity is typically a square-root branch point that lies
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FIG. 4. Accuracy of rescaled hybrid Paeorel approximants for the ground state energy of He, as a function of order in
the perturbation expansion. The points are determined using Borel funétjgneth the values of the shift parameter

indicated as follows:+, m=0; O, m=—-1/2; A, m=—1; ¢, m=-3/2. The dotted curve shows-log,(S
—Eexac)/Eexadl, Where S, is the mean of the four summation approximants at orderThe solid curve shows
—logid o /Sy, whereo, is the standard deviation from the mean of the four approximants at krder

on the negative real axté:?° Because this problem is separable, in ellipsoidal coordinates, it is
straightforward to derive an exact solution for the locatignof the branch point® Since this
singularity is the nearest to the origin in the complex plane, it follows from Darboux’s thédrem
that the expressiog(8)(1— 6/ 8) >+ h(8), whereg andh are nonsingular fofs|<|&,|, has the
same expansion coefficients in the limit of large order as the actual expandionTbis suggests
the use of Darboux approximarits,

Fiunm)(0) = == (19

whereP,, Qy, andRy are polynomials of degreds, M, andN, respectively. These polyno-
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FIG. 5. Accuracy of rescaled hybrid Darboux—Borel approximgFjsand rescaled hybrid PadBorel approximants+)
for the ground state energy ofHvith internuclear distancB= 2, as a function of order in the perturbation expansion. The
Borel summation is unshifted.

mials can be determined by settifg_ v,n; equal to the expansion ¢f, expanding the square
root, multiplying through byQy,,, and then solving the resulting set of linear equations.

Figure 5 compares accuracies of Darboux—Borel and PRdeel approximants for the
ground-state energy of H These results correspond to internuclear dist&e&, which is very
close to the equilibrium bond lengtliThe renormalizedD-dimensional Hamiltonian for this
problem is described in Ref. 23There is noticeable improvement in accuracy from the Darboux
approximants. This is seen as well for other value®of

VI. DISCUSSION

Our central results are the followingl) Summation accuracy depends significantly on re-
moving the Coulombic poles at tHe—1 limit, and rescaling removes the first-order pole more
effectively than subtraction using an approximate resid(®. Renormalization of the
D-dimensional Hamiltonian, by multiplying the interelectron potential with a polynomidléan
significantly improve the rate of convergen¢8). Comparison of results from shifted Borel trans-
forms, given by Eqs(6) and(7), yields a standard deviatiam, that provides a reliable estimate
of the summation accuracy at given orderA reasonable summation procedure is to carry out a
series of inexpensive moderate-order calculations using a quani¢atiover the full range oh
values, with some arbitrary value &f1), in order to determine an approximate range\gfthat
can be expected to yield the fastest convergence. In the case of He, for example, a plot such as in
Fig. 2 would suggest 0.55)\ ;=<0.25. Then additional moderate-order calculations could be used
to determine an optimal pair of; and\(1) to be used in the expensive large-order calculation.
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One could smooth the convergence of the approximant sequence by using thgkméaarious
shifted approximants, eliminating, that have larger,. For example, ifo,; is greater tharr,g,

as in Fig. 4, thers,s would be retained as the 27th-order result.

We find that the best two-parameter fit of summation accuracy versus order, for two-electron
atoms and for H, is a(k)=ag+ a kY% However, there appears to be a systematic deviation
from this behavior, with a leveling off of accuracy at intermediate orders followed by an increase
at higher orders, which led us to use cubic polynomials for the fits in Fig. 1. For He the plateau is
at approximately eight significant figures. This effect was noted in Ref. 15, for unrenormalized
expansions, and was attributed to the need to model more than just the dominant singularity in the
Borel function. For He one obtains approximately three significant figures by explicitly including
the poles ab=1, and apparently, seven figures from modeling also the dominant branch point in
the Borel function. This explanation is supported by the behavior of the Darboux—Borel summa-
tion for H, in Fig. 5, which explicitly includes the square-root branch point. In that case there is
rapid convergence to almost seven figures at 14th order but then it is not until 29th order that the
convergence resumes. The plateau for the PBdeel results is less distinct, presumably because
at intermediate orders the Padpproximants are still refining the description of the branch point
while also attempting to decipher other singularity structure. By order 27 the-Badel accuracy
is about equal to the Darboux—Borel accuracy.

We have shown results only for ground states, but in general we expect similar singularity
structure, and hence similar convergence behavior, for the lowest eigenstate of any given symme-
try. With other excited states there are branch points iretiergyfunction E(8).3! Although not
the dominant singularities, in practice they dominate the convergence behavior until very high
order. For example, it has been estimatatat the asymptotic behavior due to the singularity at
the origin for the 52s 'S state of He will not assert itself until 88th order. In that case Borel
summation is not very effective, and it is more appropriate to use a summation method designed
to model the apparent dominating singularities.

Recent tenth-order calculations for the three-electron Htehmow convergence behavior al-
most identical to that for two-electron atoms. It remains to be seen if this will hold as well for
four-electron atoms. Loeskhas formulated the IV expansion forS states of all atoms in the
periodic table. However, with four electrons there are ten independent internal coordinates at large
D but only 9 atD= 3. Therefore it is not clear that Loeser’s theory will converge to the physical
solution when taken to large order. Such coordinate redundancies proliferate quadratically as the
number of electrons increases. An alternative formulation that avoids this situation is “partial”
dimensional continuation, applied recently in a study of triatomic molecular rotation sfiebira.
that case one body-fixed axis was allowed to rotat® inlimensions while the other axis was
treated as rotating about the first in only three dimensions. Some sort of related procedure could,
in principle, give aD-dependent Hamiltonian with the physical number of coordinates.

Probably a more serious obstacle to applying tHg éxpansion to many-electron systems is
the rapid increase in computational cost with increasing numbers of internal coordfhefib.
larger systems it will be necessary to introduce approximations, such as separability assdfnptions
or basis-set truncations. The tradeoff will be between a small systematic error, from a large-order
inexact theory, and a random, but possibly larger, error from truncating the exact theory at lower
order.
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