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The convergence of large-order expansions in � = 1=D,
where D is the dimensionality of coordinate space, for en-
ergies E(�) of Coulomb systems is strongly a�ected by sin-
gularities at � = 1 and � = 0. Pad�e-Borel approximants
with modi�cations that completely remove the singularities
at � = 1 and remove the dominant singularty at � = 0 are
demonstrated. A renormalization of the interelectron repul-
sion is found to move the dominant singularity of the Borel
function F (�) =

P
j
E0
j=j!, where E

0
j are the the expansion

coe�cients of the energy with singularity structure removed
at � = 1, farther from the origin and thereby accelerate sum-
mation convergence. The ground-state energies of He and H+

2

are used as test cases. The new methods give signi�cant im-
provement over previous summation methods. Shifted Borel
summation using Fm(�) =

P
j
E0
j=�(j+1�m) is considered.

The standard deviation of results calculated with di�erent
values of the shift parameter m is proposed as a measure of
summation accuracy.

02.30.Lt, 31.15.Md

I. INTRODUCTION

Large-order perturbation theory in 1=D, where D is
the dimensionality of coordinate space, was proposed by
Mlodinow [1,2] as an alternative to variational methods
and coupling-constant perturbation theories for solving
the Schr�odinger equation. This \dimensional perturba-
tion theory" has some appealing features. The �rst-order
theory gives a semiquantitative description of electron
correlation [3{11] and other subtle many-body e�ects
[12,13] and it is relatively easy to calculate the perturba-
tion expansion to very high order, using recursion rela-
tions [14,15]. 1=D expansions have now been calculated
through 30th order for two-electron atoms [16] and 10th
order for 3-electron atoms [17]. Large-order expansions
have also been calculated for the H atom in an external
�eld [18{22] and for the H+

2 molecule [20,23,24].
The expansions for energies of Coulombic systems are,

in general, divergent, due to singularities in the energy
function E(�), with � = 1=D treated as a continuous
complex variable. One type of singularity is a pole in
E(�) that results from the fact that for certain integer
values of D the expectation value of the Coulomb po-
tential can diverge at particle coalescences [25]. This

singularity can be accurately characterized and removed
either by subtraction [26] or by rescaling [5,27], making
partial sums of the expansion appear rapidly convergent
at low orders. A second characteristic type of singularity
is a complicated branch point or essential singularity at
� = 0, which leads to divergence at higher orders [16].
This singularity can in principle be explained by an in-
stanton analysis [28{30]. The zeroth-order limit of the
perturbation theory corresponds to localization at an ex-
tremum of an e�ective potential that is the sum of the
3-dimensional Coulomb potential and a centrifugal po-
tential that comes from the dimensional continuation of
the kinetic energy operator. For applications to bound
systems, one generally chooses an extremum that corre-
sponds to a stable minimum. However, there typically
exist sub-barrier trajectories in imaginary time that al-
low for tunneling out of the minimum. This causes the
zeroth-order limit to be singular, with the energy expan-
sion coe�cients diverging as a factorial.
Summation methods in which the Coulombic poles are

removed from E(�) and then the remainder expansion is
summed with Pad�e approximants or Pad�e-Borel approx-
imants yield apparently convergent results at all orders
[16,31,32]. Our purpose here is to re�ne those methods
to improve the rate of convergence. Our strategy is to
renormalize the Hamiltonian, by rede�ning the dimen-
sional continuation in such a way that the e�ect of the
singularity at the origin is mitigated, and to improve the
the techniques for modeling the singularities. In addi-
tion, we develop a method for estimating the accuracy of
a given summation approximant. He and H+

2 are used
as test cases.

II. SUMMATION APPROXIMANTS

The asymptotic expansion in 1=D for the electronic
energy of an atom or molecule has the form

E(�) � �2
kX

j=0

Ej�
j ; (1)

where � = 1=D. There are various algorithms for com-
puting the expansion coe�cients Ej, but the most e�-
cient, especially for problems with more than one degree
of freedom, seems to be the matrix method of Dunn et
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al. [15]. The direct evaluation of Eq. (1) at � = 1=3 using
partial sums, from truncation at given k, typically gives
slow convergence at low orders and rapid divergence at
high order.
For ground states of Coulombic systems, E has an ex-

pansion about D = 1 in the form [25]

E(�) � a�2 (D � 1)�2 + a�1 (D � 1)�1 + � � � : (2)

For a one-electron atom with nuclear charge Z, the
�rst term in Eq. (2) constitutes the exact solution, with
a�2 = 2Z2. For two-electron atoms a�2 is equal to the
ground-state energy of a two-electron Schr�odinger equa-
tion in which the Coulomb potentials have been replaced
with delta functions [25,33]. The exact solution for this
equation was obtained by Rosenthal [34] for arbitrary Z.
To remove the e�ects of the poles one can either rescale

the expansion [5,27], by multiplying it by (1� �)2, or ex-
plicitly subtract out the � expansions of the poles [26,31].
If the residues are known exactly then subtraction works
best. We consider two approaches for the case where a�2
is known but a�1 is not known: subtracting the second-
order pole and rescaling to remove the �rst-order pole,

E(�) � �2
�
a�2(1� �)�2 + (1� �)�1E0(�)

�
; (3a)

E0(�) =

kX
j=0

�j E0j; E0j = Ej � Ej�1 � a�2; (3b)

or subtraction of both poles,

E(�) � �2
�
a�2(1� �)�2+ a�1(1� �)�1+ E0(�)

�
; (4a)

E0(�) =

kX
j=0

�jE0j; E0j = Ej� (j + 1)a�2� a�1; (4b)

with

a�1 = lim
�!1

kX
j=0

�j [Ej � (j + 1)a�2] : (5)

Eq. (5) can be evaluated using Pad�e summation [31]. The
use of approximants based on Eqs. (4) has been called
hybrid summation [26], since it is the combination of an
expansion about � = 1 and an expansion about � = 0.
We will refer to the approach in Eqs. (3) as rescaled hybrid

summation.
It is possible to obtain convergent results by summing

the expansions for E0 with Pad�e approximants or with
Pad�e-Borel approximants. The latter give a somewhat
better convergence rate. Here we employ a more general
technique [29] that will be useful not just for summing
the energy expansion but also for analyzing the singu-
larity structure at � = 0 and for estimating summation
accuracy. Consider a function Fm(�) with asymptotic
expansion

Fm(�) �

kX
j=j0

�jFm;j; Fm;j = E0j=�(j + 1�m); (6)

where j0 is the smallest integer greater than or equal to
m. This function is related to E0(�) by the transform

E0(�) =

j0�1X
j=0

E0j�
j

+ e�(m�1)i� lim
x!1

Z xei�

0

x�mFm
�
�xei�

�
exp

�
� xei�

�
dx; (7)

with the angle � chosen so that F (�xei�) is nonsingular
along the path of integration and ��=2 < � < �=2. If
m = 0 then Eq. (7) is the usual Borel transform. For
the function Fm in Eq. (7) we will substitute Pad�e ap-
proximants of the expansion in Eq. (6). For m 6= 0 we
will refer to the summationmethod as shifted Pad�e-Borel
summation.

III. RENORMALIZATION

A. Charge renormalization

The standard approach to analytic continuation of the
Hamiltonian to arbitrary D is to continue the kinetic en-
ergy operator to D dimensions while keeping the physi-
cal, 3-dimensional, de�nition for the potential energy op-
erator [33,35]. If the energy is expressed in atomic units
multiplied by Z2=D2, then the e�ective potential for an
S state of the two-electron atom at large D is

Ve�(r1; r2; �) = Vcentr + VCoul; (8)

Vcentr =

�
1� 6� + 8�

8 sin2 �
�

1

8

��
1

r21
+

1

r22

�
; (9)

VCoul = �r�11 � r�12 + � (r21 + r22 � 2r1r2 cos �)
�1=2: (10)

Vcentr is the centrifugal potential from the D-dimensional
kinetic energy operator while VCoul is the 3-dimensional
Coulomb potential, with � = 1=Z. This e�ective poten-
tial has a stable global minimum, with r1 = r2, as long
as � is less than a critical value �c � 0:8144. For H�,
with � = 1, this symmetric extremum is a saddle point
[36,37], and if this point is used for the zeroth order of
the perturbation theory, then the coe�cients of the en-
ergy expansion will be complex numbers. Similarly, the
symmetric large-D extrema for the H+

2 and H2 molecules
also correspond to saddle points [36,38,39].
A strategy for calculating 1=D expansions for systems

that are unstable in the large-D limit was proposed in
Ref. [40], using the fact that the de�nition of the di-
mensional continuation of the Hamiltonian is arbitrary
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as long as it gives the correct operator at D = 3. If we
renormalize the repulsive part of the Coulomb potential,
by replacing it with a continuous function of � such that
the repulsion becomes weaker as � approaches zero, it is
possible to ensure that the symmetric extremumwill be a
minimum. This approach is closely related to the renor-
malized perturbation theory developed by Killingbeck for
anharmonic oscillators [41].
Charge renormalization was applied to large-order per-

turbation theory for H� in Ref. [42]. The parameter � in
Eq. (10) was replaced with the linear polynomial

�(�) = �0 + �1�; �1 = 3 (Z�1 � �0) (11)

with �0 treated as a free parameter. �1 is de�ned so
that �(1=3) = 1=Z. (This modi�cation of � does not
a�ect the scale factor in the energy units. We continue
to use atomic units multiplied by Z2=D2, where Z is in-
dependent of D.) The hybrid expansion, Eq. (4a), with
Pad�e-Borel summation of E0 gave convergent results for
H� for any value of �0 less than �c. The fastest conver-
gence was for �0 � (2Z)�1, which gave a more accurate
result at given order for the ground-state energy of H�

than had been obtained [16] for the ground-state energy
of He with unrenormalized �. This rapid convergence for
H� suggests that the use of a �-dependent potential en-
ergy operator could be used to improve the convergence
even for systems that are stable at large D.
Figure 1 shows the e�ect on the convergence for He

of setting �0 = (2Z)�1. Since there is a fair amount
of scatter in the convergence from order to order, we
have plotted cubic polynomial �ts to more clearly show
the convergence patterns. The dashed curves correspond
to hybrid approximants, based on Eq. (4a), while the
solid curves correspond to rescaled hybrid approximants,
based on Eq. (3a). The expansion of E0 was summed
with unshifted Pad�e-Borel approximants. We de�ne the
\accuracy" of a summation approximant Sk at given or-
der k as

�(k) = � log10 j(Sk � Eexact)=Eexactj; (12)

which is a continuous measure of the number of accurate
digits.
Several characteristic trends are evident. First, it is

clear that the rescaled hybrid summation is the better of
the two summation methods. It is possible to somewhat
improve the accuracy of the unscaled hybrid approxi-
mants by applying Shanks extrapolation, with some sub-
jective judgement, to the Pad�e-approximant sequences
for a�1, but the results remain less dependable than those
from the rescaled hybrid method. The general shapes
of the rescaled hybrid curves are representative of those
over a wide range of �0. They begin with an almost lin-
ear increase in the number of accurate digits. Then, upon
reaching an accuracy plateau of between approximately 6
to 8 digits the rate of convergence slows signi�cantly. For
�0 < 0:8=Z there is a return to a more rapid convergence
rate, beginning at around 25th order. Figure 2 shows the

initial slope of �(k) as a function of �0. The increasing
rate of convergence is balanced at very low order by the
fact that the zeroth-order accuracy decreases for �0 far
from the physical value. (The zeroth-order result is equal
to the exact energy for �0 � 0:46, which incidently corre-
sponds to a dip in Fig. 2.) Nevertheless, there is for the
He atom a clear advantage to choosing �0 in the general
neighborhood of 0:5=Z.
The functional form chosen for �(�) is essentially arbi-

trary. In addition to the linear polynomial, Eq. (11), we
have considered a quadratic polynomial,

�(�) = �0 + �1� + �2�
2; (13)

�1 =
9

2Z
� 4�0 �

1

2
�(1); �2 = 3�0 +

3

2
�(1)�

9

2Z
;

(14)

with �(1) and �0 = �(0) treated as free parameters. This
makes it possible to control the behavior at both of the
solvable limits, � = 0 and � = 1. The position of the dom-
inant singularities in the Borel function depend only on
the value of �0. Therefore, the rate of convergence of the
summation approximants depends less strongly on �(1)
than on �(0). We �nd in practice that certain choices of
�(1) do improve the convergence at low and intermediate
orders, especially for H�, for which the linear �(�) can
imply a very large value for �(1).

B. E�ect on singularity structure

Analysis of the expansion coe�cients for the ground-
state energy of two-electron atoms has shown [16] that
the dominant singularities of F0(�) (i.e., the singulari-
ties nearest to the origin of the complex � plane) are a
complex-conjugate pair of square-root branch points in
the negative half-plane. Let ��e�ib be their locations.
Then the coe�cients of the asymptotic expansion in �

of the expression G
�
� + �eib

�1=2
+ G�

�
� + �e�ib

�1=2
,

where G is a constant, will in the limit of large order
be equal to the coe�cients F0;j of the asymptotic ex-
pansion of F0, Eq. (6). Thus, in the limit of large j we
have

F0;j � 2 jGj �1=2(�1)j

�
�
�
j � 1

2

�
�
�
�

1
2

�
�(j + 1)

��j cos
�
(j � 1

2
)b� arg G

�
: (15)

Now compare this to the function

f(�) = 

�
� + �eib

��1
+ 
�

�
� + �e�ib

��1
; (16)

which has the expansion coe�cients

fj = 2 j
j ��1(�1)j��j cos
�
(j + 1)b� arg 


�
: (17)
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If we set 
 = 2�1��1=2�3=2jGjei(argG+3b=2), then fj �
F3=2;j, which implies that the dominant singularities of
F3=2(�) will be �rst-order poles at the same locations as
the dominant branch points in F0(�).
The e�ect on convergence of the renormalization can

be understood in terms of the e�ect on the locations
of the dominant singularities of Fm(�). A convenient
method for determining these locations is to examine the
singularities of the Pad�e approximants of Fm. Previously
[16] we used the quadratic Pad�e approximants of F0 for
this purpose, noting the positions of the branch points
nearest the origin. Once the branch points are approxi-
mately identi�ed in this manner, the result can be re�ned
by noting the positions of the corresponding poles in the
linear Pad�e approximants of F3=2, which stabilize some-
what faster.
We �nd that the positions of these singularities depend

only on the value of �0. In general, there appear to be
3 distinct complex-conjugate pairs of singularities in the
Borel functions. For �0 close to �c the dominant singular-
ities are in the positive half plane, but as �0 decreases this
pair rapidly moves away from the origin. For �0 < 0:8
the dominant singularities are the pair in the negative
half plane. Figure 3 shows the real and imaginary parts
of this pair. The steady movement away from the origin
as �0 decreases is presumably related to the improvement
in convergence. In the limit �0 ! 0 the singularities in
the Borel function must disappear, since E0(�) is then
nonsingular. It is interesting to note that the mechanism
for this disappearance is for the prefactor multiplying the
dominant singularities to go to zero, rather than for the
positions of the singularities to move out to in�nity. The
third pair of singularities has an imaginary part of ��
with a small real part that depends weakly on �0. This
is far enough from the origin that these can be expected
to have no signi�cant e�ect on the rate of convergence.

C. E�ect on roundo� error

The recursive computation of the energy expansion
coe�cients Ek is somewhat unstable to roundo� error
[15,16], on account of their factorial divergence. How-
ever, in the hydrogenic limit Z !1 (i.e. �! 0) the en-
ergy expansion is convergent, with only a linear increase
in Ek with k. At small but nonzero � the perturbation
theory is still divergent but the growth of the expansion
coe�cients is nearly linear until very high order. This
apparently comes about through massive cancelations of
intermediate quantities that grow factorially. The result
is extreme loss of precision near the hydrogenic limit.
The number of signi�cant �gures in the Ek decreases

approximately linearly with k. It was stated previously
[16,32] that roundo� error in the Ek becomes manifest in
the Sk at about the value of k for which the precision of
the Ek intersects the accuracy of the Sk. More careful
analysis reveals that this rule is generally valid but some-

what conservative. The actual propagation of error in the
summation approximants is complicated, with some ap-
proximants much less sensitive than others and thereby
retaining their accuracy beyond the intersection. Such
approximants can be identi�ed empirically by adding to
the Ek random error of a given magnitude.
For the renormalized calculations we �nd that the rate

of precision loss depends mainly on the value of the pa-
rameter �0, increasing as �0 decreases. We have used
quadruple-precision arithmetic (32 decimal digits) for
computing the Ek in the calculations reported here, so
that the roundo� error is always less than the conver-
gence accuracy.

D. Renormalization for diatomic molecules

Within the Born-Oppenheimer approximation the
Hamiltonian is not homogeneous, since the internuclear
distance R is treated as a parameter rather than as a
dynamical variable. Therefore, transformation to atomic
units multiplied byD�2 replaces Rwith theD-dependent
parameter ~R = R=D2. In a recent study of H+

2 it was
shown that renormalization of this D dependence is a
simple and e�ective way to improve the convergence of
the 1=D expansion [24]. One replaces ~R with

~R =
2(3 + �)

(D � 1)(D + �)
R; (18)

with � treated as a free parameter. (The factor of D� 1
is included to give a reasonable D ! 1 limit.) An im-
portant e�ect of this renormalization is to ensure that
the D ! 1 limit corresponds to an e�ective potential
with a single global minimum. Otherwise the molecule
undergoes a symmetry breaking transition to a double-
well problem as R increases, which signi�cantly degrades
the convergence of the large-order expansion. For many-
electron diatomic molecules a renormalization of the in-
terelectron repulsion, completely analogous to the proce-
dure for atoms in Section IIIA, could be used to atten-
uate the e�ect on convergence of the interelectron repul-
sion in addition to the R renormalization that prevents
the symmetry breaking.

IV. ESTIMATING THE ACCURACY OF THE

SUMMATION APPROXIMANTS

We have calculated the summation approximants Sk
using a range of integer and half-integer values for the
shift parameter m in the Borel function Fm. The best
results tend to correspond to m = 0, 1/2, 1, and 3/2,
but which of these four is best at given order appears
to be random. Therefore, to obtain an estimate of the
accuracy of the summation at given order k we compute
the standard deviation �k from the mean �Sk of the four
di�erent Sk.

4



Figure 4 shows results for the He ground state en-
ergy with �0 = 0:5=Z. The dotted curve shows the
actual accuracy of the mean. The solid curve shows
� log10 j�k=

�Skj. The largest disagreements between the
actual accuracy and this estimate occurs at very high
orders, where the mean tends to be signi�cantly more
accurate than the individual approximants and the esti-
mate is too conservative.

V. DARBOUX-BOREL APPROXIMANTS

The singularity structure of the Borel function F (�) for
H+
2 is similar to that for the two-electron atom except

that the dominant singularity is typically a square-root
branch point that lies on the negative real axis [23,30].
Because this problem is separable, in ellipsoidal coordi-
nates, it is straightforward to derive an exact solution for
the location �0 of the branch point [30]. Since this singu-
larity is the nearest to the origin in the complex plane, it
follows from Darboux's theorem [45] that the expression
g(�)(1 � �=�0)

1=2 + h(�), where g and h are nonsingular
for j�j � j�0j, has the same expansion coe�cients in the
limit of large order as the actual expansion of F . This
suggests the use of Darboux approximants [44],

F[L;N=M ](�) =
RN (�)

QM (�)
(1� �=�0)

1=2 +
PL(�)

QM (�)
; (19)

where PL, QM , and RN are polynomials of degrees L,
M , and N , respectively. These polynomials can be de-
termined by setting F[L;M=N ] equal to the expansion of F ,
expanding the square root, multiplying through by QM ,
and then solving the resulting set of linear equations.
Figure 5 compares accuracies of Darboux-Borel and

Pad�e-Borel approximants for the ground-state energy of
H+
2 . These results correspond to internuclear distance

R = 2, which is very close to the equilibrium bond length.
(The renormalized D-dimensional Hamiltonian for this
problem is described in Ref. [24].) There is noticeable im-
provement in accuracy from the Darboux approximants.
This is seen as well for other values of R.

VI. DISCUSSION

Our central results are the following: 1) Summation
accuracy depends signi�cantly on removing the Coulom-
bic poles at the D ! 1 limit, and rescaling removes the
�rst-order pole more e�ectively than subtraction using
an approximate residue. 2) Renormalization of the D-
dimensional Hamiltonian, by multiplying the interelec-
tron potential with a polynomial in � can signi�cantly
improve the rate of convergence. 3) Comparison of re-
sults from shifted Borel transforms, given by Eqs. (6)
and (7), yields a standard deviation �k that provides a
reliable estimate of the summation accuracy at given or-
der k. A reasonable summation procedure is to carry out

a series of inexpensive moderate-order calculations using
a quadratic �(�) over the full range of �0 values, with
some arbitrary value of �(1), in order to determine an
approximate range of �0 that can be expected to yield
the fastest convergence. In the case of He, for example, a
plot such as in Fig. 2 would suggest 0:1 � �0 � 0:3. Then
additional moderate-order calculations could be used to
determine an optimal pair of �0 and �(1) to be used in
the expensive large-order calculation. One could smooth
the convergence of the approximant sequence by using
the mean �Sk of various shifted approximants, eliminat-
ing �Sk that have large �k. For example, if �27 is greater
than �26, as in Fig. 4, then �S26 would be retained as the
27th-order result.
We �nd that the best two-parameter �t of summation

accuracy vs. order, for two-electron atoms and for H+
2 , is

�(k) = �0+�1k
1=2. However, there appears to be a sys-

tematic deviation from this behavior, with a leveling o�
of accuracy at intermediate orders followed by an increase
at higher orders, which led us to use cubic polynomials for
the �ts in Fig. 1. For He the plateau is at approximately
8 signi�cant �gures. This e�ect was noted in Ref. [16],
for unrenormalized expansions, and was attributed to the
need to model more than just the dominant singularity
in the Borel function. For He one obtains approximately
3 signi�cant �gures by explicitly including the poles at
� = 1, and apparently, 7 �gures from modeling also the
dominant branch point in the Borel function. This expla-
nation is supported by the behavior of the Darboux-Borel
summation for H+

2 in Fig. 5, which explicitly includes
the square-root branch point. In that case there is rapid
convergence to almost 7 �gures at 14th order but then
it is not until 29th order that the convergence resumes.
The plateau for the Pad�e-Borel results is less distinct,
presumably because at intermediate orders the Pad�e ap-
proximants are still re�ning the description of the branch
point while also attempting to decipher other singularity
structure. By order 27 the Pad�e-Borel accuracy is about
equal to the Darboux-Borel accuracy.
We have shown results only for ground states, but in

general we expect similar singularity structure, and hence
similar convergence behavior, for the lowest eigenstate of
any given symmetry. With other excited states there
are branch points in the energy function E(�) [32]. Al-
though not the dominant singularities, in practice they
dominate the convergence behavior until very high order.
For example, it has been estimated [32] that the asymp-
totic behavior due to the singularity at the origin for the
1s2s 1S state will not assert itself until 88th order. In
that case Borel summation is not very e�ective, and it is
more appropriate to use a summation method designed
to model the apparent dominating singularities.
Recent 10th-order calculations for the 3-electron atom

[17] show convergence behavior almost identical to that
for 2-electron atoms. It remains to be seen if this will
hold as well for 4-electron atoms. Loeser [6] has formu-
lated the 1=D expansion for S states of all atoms in the
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periodic table. However, with 4 electrons there are 10
independent internal coordinates at large D but only 9
at D = 3. Therefore, it is not clear that Loeser's the-
ory will converge to the physical solution when taken
to large order. Such coordinate redundancies prolifer-
ate quadratically as the number of electrons increases.
An alternative formulation that avoids this situation is
\partial" dimensional continuation, applied recently in
a study of triatomic molecular rotation spectra [46]. In
that case one body-�xed axis was allowed to rotate in D
dimensions while the other axis was treated as rotating
about the �rst in only 3 dimensions. Some sort of re-
lated procedure could, in principle, give a D-dependent
Hamiltonian with the physical number of coordinates.
Probably a more serious obstacle to applying the 1=D

expansion to many-electron systems is the rapid increase
in computational cost with increasing numbers of inter-
nal coordinates [15]. With larger systems it will be nec-
essary to introduce approximations, such as separability
assumptions [47] or basis-set truncations. The tradeo�
will be between a small systematic error, from a large-
order inexact theory, and a random, but possibly larger,
error from truncating the exact theory at lower order.
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FIG. 1. Cubic polynomial �ts of the number of accurate
digits from summation approximants for the ground state en-
ergy of He, as a function of order, with \accuracy" de�ned as
� log j�E=Eexactj, where �E = Eapprox �Eexact, with Eexact

from Ref. [43]. The dashed curves are from unshifted hybrid
Pad�e-Borel approximants while the solid curves are from un-
shifted rescaled hybrid Pad�e-Borel approximants. Results are
shown for �0 = 1=2 (unrenormalized) and for �0 = 1=4, as
labeled, �(�) = �0 + �1�.

FIG. 2. The rate of convergence at low order for unshifted
rescaled hybrid Pad�e-Borel approximants for the ground state
energy of He, as a function of the renormalization parameter
�0, using �(�) = �0 +�1�. The rate of convergence is de�ned
here as the parameter �1 from the 3-parameter least-squares
�t of the accuracy �(k) = �0 + �1k + �2k

2 + �3k
3 with �0

constrained to equal the accuracy of S0

FIG. 3. Real part (solid curve) and imaginary part (dashed
curve) of one of the dominant singularities in the Borel func-
tions of the two-electron isoelectronic series, as a function of
�0. The other dominant singularity is at the complex conju-
gate of this location.

FIG. 4. Accuracy of rescaled hybrid Pad�e-Borel approxi-
mants for the ground state energy of He, as a function of
order in the perturbation expansion. The points are de-
termined using Borel functions Fm with the values of the
shift parameter as follows: +, m = 0; 2, m = �1=2;
4, m = �1; 3, m = �3=2. The dotted curve shows
� log10 j( �Sk�Eexact)=Eexactj, where �Sk is the mean of the four
summation approximants at order k. The solid curve shows
� log10 j�k= �Sk j, where �k is the standard deviation from the
mean of the four approximants at order k.

FIG. 5. Accuracy of rescaled hybrid Darboux-Borel ap-
proximants (r) and Pad�e-Borel approximants (�) for the
ground state energy of H+

2 with internuclear distance R = 2,
as a function of order in the perturbation expansion. The
Borel summation is unshifted.
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