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Fermi-like resonances for circular Rydberg states of a hydrogen atom

in a magnetic field

A. V. Sergeev

Abstract. The energy spectrum of Rydberg states of large angular momentum and

relatively small value of n m−| |  in an arbitrary magnetic field is calculated by the

semiclassical expansion in powers of 1/| |m . The problem is approximated by an

anisotropic two-dimensional harmonic oscillator. The anharmonic corrections to the

energy are calculated, and the series is summed. Special emphasis is put on excited

degenerate states of the harmonic oscillator (similar to Fermi resonances in a molecular

vibration theory) when the 1/|m|-expansion fails to converge. Using the fact that the sum

and the product of the energies of degenerate states have regular expansions, the quasi-

crossings of the levels are obtained. The complex branch points joining the levels are also

found.
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Text

Fermi-like resonances for circular Rydberg states of a hydrogen atom

in a magnetic field

A. V. Sergeev

1. Introduction

A circular Rydberg state is a state with a large magnetic quantum number m and a

relatively small value of n m−| | , where n is a principal quantum number. Inside a large-|m|

azimuthal subspace, it may be a ground state or one of the lowest excited states. In a

such quasiclassical system, an electron moves along the circular orbit performing small

vibrations both in the radial direction and in the direction orthogonal to the plane of the

orbit. The vibrations are the weaker, the smaller is a value of n m−| | .

The term "circular states" is used mostly for the states with a maximum possible m

( | |m n= −1), when the oscillations around the circular trajectory have purely quantum

nature. These states can be prepared by the adiabatic microwave transfer method (Hulet

and Kleppner, 1983). The experiments of Liang et al (1986) demonstrate the feasibility

of circular state spectroscopy.

Rydberg states of atomic hydrogen in a magnetic field were extensively studied

from various points of view (for references, see Kleppner et al 1983). Zimmerman et al

(1980) calculated the energy levels of m = 0  states as functions of the magnetic field

intensity. Their results display clear repulsions between numerous levels. Wunner et al
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(1986) computed the energies of circular states in a magnetic field. Here, we continue to

study such high-|m| Rydberg states paying attention to level crossings.

Since the radius of the orbit rises proportionally to m2 , the circular states are

highly sensitive to diamagnetic interaction. So, the quadratic Zeeman shift may be

comparable with the line spacing, and quasi-crossings occur. The object for our study is

the pattern of the energy levels which exhibits regular series of quasi-crossings. Using a

similarity between this problem and the spectrum of molecular vibrations, the quasi-

crossings are identified as Fermi resonances. The energies and complex branch points are

calculated by the semiclassical method of 1/|m|-expansion applied previously for the

ground state and for the states with n m= +| | 1  by Bender, Mlodinow and Papanicolaou

(1982).

To solve the problem, we use Rayleigh - Schrödinger perturbation theory for a

two-dimensional harmonic oscillator. The eigenstates of the harmonic oscillator would

be a proper zero-order approximation unless the accidental degeneracy occurs, when

two or more levels corresponding to different vibrations have the same energy, and when

the anharmonic corrections become infinitely large. To avoid the divergence of the

perturbation theory, we use a simple trick. The resulting spectrum is shown in a whole

range of magnetic field strengths.

2. The large |m| limit

The Hamiltonian of the hydrogen atom in a magnetic field B along z-axis is, in

atomic units:

H
r

B
L

B
x yz= − + + +

1

2

1

2 8
2

2
2 2p ( ) (1)
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(atomic unity for the magnetic field is 2 35 105. ⋅  T). The paramagnetic interaction 
B

Lz2
 is

an integral of motion equal 
B

m
2

, and it will be omitted further.

In cylindrical coordinates, the Schrödinger equation takes the form:
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V z E zeff ( , ) ( , ) , (2)

where r z= +( ) /ρ2 2 1 2 , and the wave function Ψ( ) ( , )/r = −e zimϕ ρ ψ ρ1 2 . The effective

potential in equation (2) is:

V z
m

r

B
eff ( , )ρ

ρ
ρ= − +

2

2

2
2

2

1

8
. (3)

Notice that m2 1 4− /  is replaced by m 2  in the centrifugal term in Veff  as it is usually

done in quasiclassical theory. The term −1 4 2/ ρ  remaining in the kinetic energy can be

eliminated in principle by Langer transformation of the variable r.

Let m > 0 . A convenient way to exhibit explicitly the large-m limit is to define

rescaled variables:

ρ ρ= ′ = ′ = ′ = ′− −m z m z E m E B m B2 2 2 3, , , (4)

and assume that ′B  be m independent. Equation (2) then reads
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where the effective potential is

′ ′ ′ =
′
−

′
+ ′ ′V z

r
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Equation (5) has a form of the Schrödinger equation where 1 / m  plays the role of the

Planck's constant, or where m2  imitates the mass.

To solve the equation (5), we use the method from molecular vibration theory. In

the large m  limit, the wave function concentrates around the point of minimum ( , )′ ′ρ 0 0z

of the potential (6) and describe a classical particle resting on the plane ( , )′ ′ρ z , the

energy being E V z0 0 0
′ = ′ ′ ′eff ( , )ρ . The classical limit may be regarded equally as a circular

motion of a particle in a three-dimensional potential ′ ′ ′ ′ = −
′
+ ′ ′V x y z

r

B
( , , )

1

8

2
2ρ  with

unity angular momentum along z-axis, the radius of the orbit being ′ρ 0  and the velocity

being 1 0/ ′ρ .

The equilibrium coordinates are ′ =z0 0  and ′ = ′ρ 0 0r  where ′r0  is a positive root of

an algebraic equation

′ ′ + ′ − =B
r r

2

0
4

04
1 0 . (7)

In a strong field limit, the equilibrium radius tends to zero. It is no longer the case

after the second scaling transformation

′ = ′ ′ = ′ ′ = ′ −ρ ρr z r z E r E0 0 0
2~, ~,

~
(8)

that yields
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Here,

~
(~, ~) ~ ~

~
effV z

g

r

gρ
ρ
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2

1

22
2 (10)

is a new effective potential, and
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g B r r= ′ ′ = − ′2
0

4
04 1/ (11)

is a coupling parameter. In the absence of field, g = 0 , and the potential is purely

Coulomb. In the strong field limit, g =1, and the potential reduces to a diamagnetic

term. Notice that g1 4/  coincides with the dimensionless parameter η , introduced by

Bender et al (1982).

Since the equilibrium radius ~r0  and the velocity 1 0/ ~r  remain unity, the classical

dynamics in a potential 
~

(~, ~,~) ~
~V x y z

g

r

g= − − +1

2
2ρ  does not depend on magnetic field (for

purely circular motion only, because the frequencies of vibrations still vary).

Further, we shall investigate in detail the latest scaled version of the problem

because it is especially convenient for semiclassical treatment. To obtain g from the

given value of ′B , one should do successive calculation ′ → → → ′B w w r1 1 0 :

w B B1
1 3 2 1 2 1 31

2
1 1

64

27
= ′ + + ′− / / /[ ( ) ] ,

w B w w2
1 2

1 1
1 1 23= ′ −− −/ /( / ) ,

′ = ′ − −−r B w w w0
2

2
1

2
2 1 2

2[( ) ] /

(when ′ =B 0 , ′ =r0 1) and then use (11). Reverse, the initial problem can be

parametrized in terms of g : ′ = −r g0 1 , ′ = − −B g g2 11/2 2( ) , and

′ = − + − −E g g0
21 2 3 2 1( / / )( ) .

3. Calculation of the energy levels

Let us investigate the dependence of the scaled energy 
~
E  on the coupling

parameter g. Introducing displacement coordinates ξ ρ= −m1 2 1/ (~ )  and η = m z1 2/ ~,

we treat the problem as a harmonic oscillator perturbed by the potential U( , )ξ η :
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where
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m

m
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~
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ε ω ω= − = + + +(
~ ~

) ( / ) ( / )E E m n n0 1 1 2 21 2 1 2

+ (anharmonic terms), (14)

ω ω1 21 3 1= + = −g g, (15)

are the frequencies of normal oscillations, and ϕ ξ η ψ ξ η( , ) ~( , )/ /= + − −1 1 2 1 2m m . The

anharmonic terms in the energy represent a series in powers of 1 / m  whose coefficients

are calculated from the recurrence relations previously used by Vainberg, Popov and

Sergeev (1990).

For the ground state of the oscillator ( n n1 2 0= = ), this series can be easily

summed for all m, even for m ∼ 1. The same result was obtained by Bender et al (1982)

who used a similar expansion in powers of 1 1/ ( )m + . The resulting curves 
~

( )E g  are

shown in the Figure 1. To improve the convergence of the 1/m-series for low values of

m, we use Padé approximants (up to the order [4/4]). The interesting fact is that these

curves become almost straight lines, when m > 5. In the limit m →∞  (the lowest

curve), the energy is a strictly linear function
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~
( )E g g0

1

2

3

2
= − + . (16)

The figure 1 gives a survey of the entire range of the field strengths from the zero field

~
( ) / ( )E m m n n0 2 12

1 2
2= − + + +  up to the infinite field limit 

~
( ) ( ) /E m n m1 2 11= + + .

Now, let us examine the excited states. Since the curves are close to the classical

limit (16) when m is large, it is convenient to plot the vibrational part of the energy ε( )g

instead of the full energy 
~

( )
~

( ) ( )E g E g g m= + −
0

1ε .

In the limit m →∞ , the curves ε ω ω( ) ( / ) ( / )g n n= + + +1 1 2 21 2 1 2  are presented

in the figure 2. When g = 0 , the frequencies (15) equal to unity, and the vibrational

energy ε  coincides with a sum p n n= + +1 2 1. So, the curves form the bunches

corresponding to a definite principal quantum number n m p= + . In the opposite limit,

ω1 2= , ω2 0= , ε( )1 2 11= +n , and the curves cluster into Landau resonances. When

g = 3 7/ , the frequencies are related as 2:1, and the series of curve-crossings can be

easily traced. There is an obvious similarity between this case and well-known Fermi

resonances in CO2  molecule (Herzberg 1945).

For instance, let us consider the states (10) and (02) for g ≈ 3 7/  using a standard

method of degenerate perturbation theory. Since 10  and 02  eigenstates of the

harmonic oscillator have nearly the same energy and thus perturb one another, the zero-

order wave function should be its linear combination. The diagonal matrix elements of

the Hamiltonian in equation (12) are 10  and H22 1 2

1

2

5

2
= +ω ω . The anharmonicity

that mixes the oscillator's eigenstates is u m12
2 1 2ξη − / , where the potential constant is

u g12 3 1 2= −( ) / , see equation (13). So, off-diagonal matrix elements are:

H H u m
u m

12 21 12
1 2 2 12

1 2

1
1 2

2

10 02
2

= = =−
−

/
/

/
ξη

ω ω
. (17)

Solving the secular equation
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H H

H H
11 12

21 22

0
−

−
=

ε
ε

, (18)

one obtains the energy

ε ω ω ω ω
ω ω

= + ± − +










−
1 2 1 2

2 12
2

1 2
2

1

1 2
3

2

1

2
2( )

/
u

m . (19)

If we try to expand it into a series in powers of m−1 , the radius of convergence of the

series would be small (it is proportional to ( )ω ω1 2
22− ). So, we cannot apply the 1/m-

expansion directly because of its divergence.

A convenient way to overcome this difficulty is to consider the sum and the

product of the energies. As their expansions have no more singularity when g = 3 7/ ,

they can be easily summed. Finally, the energies can be calculated from the

corresponding quadratic equation. For the triple crossing, the energies can be computed

in the same way by solution of the cubic equation.

The results of the calculation of the energy levels for m = 30  manifold are shown

on figure 3. Up to eight terms of the 1/m-expansion were used. The limiting case g = 0

corresponds to the rescaled Coulomb spectrum

ε( ) ( / )( )0 1 2 11 1 2= + +− − −p m p m p

that is near-equidistant if p m<< . When g increases, the Coulomb spectrum gradually

transforms into Landau resonances ε( )1 2 11= +n . The quasi-crossing of the levels (10)

and (02) is evident; the triple (20) - (12) - (04) quasi-crossing appears to divide into a

pair of (20) - (12) and (12) - (04) ordinary quasi-crossings, the separation of the levels

being the same as for (10) - (02) quasi-crossing.

For (10) - (04) crossing, the separation is so small that it is invisible on the figure.

Indeed, the anharmonicity that mixes the oscillator's eigenstates 10  and 04  is

u m14
4 3 2ξη − / , where u g14 15 1 8= −( ) / . So, the repulsion of the levels is of the order

m−3 2/  that is much less than (17) which is of the order m−1 2/ . The similar no-splitting
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occurs for (10) - (06), (30) - (04), and for another crossings corresponding to rational

values of ω ω1 2/  except 1/2.

The figure 4 shows the spectrum of m =10  manifold. Here, the repulsion of the

levels grows appreciably, and it is visible even for (10) - (04) quasicrossing.

Apart from the 1/m-expansion, it is interesting to examine applicability of the

standard perturbation theory (in powers of the magnetic field squared). For this purpose,

we plot on the figure 4 the curves obtained from the expansion of the energy up to the

order B6 . The analytic formulas for such an expansion for the lowest six states with

n n1 2 2+ ≤  are given in Appendix. The range of applicability of the perturbation theory

is proved to be about g < 0 06. , or B m< −0 5 3. .

4. Branch points

When the magnetic field varies in time, the diabatic transitions between the levels

occur at the points of quasi-crossings. In a quasiclassical approximation, the transition

probabilities are evaluated by assuming a complex contour embracing the branch point

and connecting two levels. So, it is important to establish the positions of the branch

points of the energy levels in a complex plane of intensity of the magnetic field.

In the limit m→∞ , the levels ( , )n n1 2  and ( , )′ ′n n1 2  cross when the ratio ω ω1 2/

equals to a rational number r n n n n= ′ − − ′( ) / ( )2 2 1 1 , or when g reaches

g r rc
n n n n( ) ( ) ( ) / ( )1 2 1 2 2 21 3− ′ ′ = − + . (20)

For large but finite m, the levels of the same parity join in branch points whose real

part is given by (20), and an imaginary part is small.

Let us consider (10) and (02) states when the energies are approximated explicitly

by (19). When the expression in square brackets in (19) diminishes, the energy has a

square-root branch point. Expanding this expression in Taylor series around the point
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g = 3 7/  and maintaining the terms of the order m−1 , one obtains the equation for the

branch point gc :

7

64
7 3

9 7

28
02 1( )g mc − + =− . (21)

Its solution is

g i mc
(10) ( ) / /( )− − −= ± ⋅ ⋅02 3 4 1 23

7
1 4 7 . (22)

For the states (11) and (03), one can similarly find

g i mc
(11) ( ) / / /( )− − −= ± ⋅ ⋅ ⋅03 1 2 3 4 1 23

7
1 4 3 7 (23)

To obtain the exact values of gc , we calculate the complex roots of the function

[ ( ) ( )]ε εn n n ng g
1 2 1 2

2− ′ ′  approximated by 1/m-series. The results are shown in Table 1. Here,

we retain only stabile digits that do not vary when the number of terms of the 1/m-series

grows. The results from the analytic formulas (22) and (23) are also given for

comparison.

The large-m behavior of gc  for (10) - (04) crossing was found to be

g m i m O mc
(10) ( ) /. . ( )− − − −= − ± ⋅ +04 1 3 2 215

19
2 540 0 724 (24)

where coefficients before m−1  and m−3 2/  were calculated by numerical fitting.

The branch points in the B-plane may be found by means of relation

B g g mc c c= − − −2 11 2 2 3/ ( ) . For instance,

B m i m O mc
(10) ( ) / / ( )− − − −= ± ⋅ +02 3 1 4 7 2 47 21

8
7 21 . (25)
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So, the branch points lie closely to the real axis in complex-conjugate pairs. Their

positions can be found together with the energies simply by assuming complex

arithmetic.

5. Conclusion

The method of semiclassical 1/m-expansion is extended here to excited states. We

consider the case when the oscillator quantum numbers n1  and n2  are much smaller than

m, but they may be not small themselves. In our case, the typical situation is near-

degeneracy of the levels because two or more excited states with different ( , )n n1 2  may

have approximately the same energy.

Within large-m framework, the quantum-mechanical problem reduces to a classical

static problem and a subsequent vibrational analysis. Since near-degenerate states are

highly sensitive to perturbation caused by anharmonic terms in a potential, the 1/m-

expansion diverges. Suitable modification of the method is proposed that avoids the

troubles related to energy quasi-crossings.

Apart from the atom in a magnetic field, the similar quasi-crossings take place for a

hydrogen atom in parallel electric and magnetic fields when ω ω1 2/  is a rational number.

The frequencies ω1  and ω2  as functions of rescaled field strengths ′ =F m F4  and

′ =B m B3  were obtained by  Vainberg et al (1990). Here, we show on the figure 5 the

curves on ( , )′ ′F B -plane of constant ratio ω ω1 2/ . It should be pointed out that there

are no quasi-crossings for purely electric field because of separability of the Stark

problem (in parabolic coordinates).

The method of 1/m-expansion is equivalent in essence to the method of 1/D-

expansion, where D is the dimensionality of coordinate space. Recently (Goodson and

Watson 1993), the large-dimensional method was applied to excited states of two-

electron atom corresponding to molecular-like vibrational excitations. If the charge of

the nucleus assumes non-integer value Zc =1 57. , then the first two frequencies of
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vibrations are related as 1:2. So, one can expect near-degeneracy of the levels ( n1 0= ,

n2 1= ) and ( n1 2= , n2 0= ) for the nearest to Zc  integer charge Z = 2  corresponding to

helium.

Goodson and Watson (1993) calculated the first 30 coefficients of the 1/D-

expansion for 1s 2s S1  state ( n1 0= , n2 1= , n3 0= ) and found that the 1/D-series is

strongly divergent because of square-root singularity at 1 0 0114/ .D = − . We explain the

origin of this singularity as a result of mixing with (200) state having near the same

energy, and we also propose the way to eliminate the singularity (by assuming the sum

and the product of the energies).

Just recently, Germann et al (1995) used dimensional perturbation theory to study

circular Rydberg states of the hydrogen atom in a uniform magnetic field. In contrast to

their approach, the present method yields highly accurate results in the vicinity of

avoided crossings. Although our results are somewhere overlapping regarding the lowest

m n= −1 states, the present calculations of avoided crossings and branch points for

excited states remain quite new.

Appendix. Expansions in a weak field

It is well known that the perturbation expansions for diamagnetic Zeeman effect

can be derived in an analytic form both for ground and for excited states of the hydrogen

atom. As for circular states, their energies up to the order B6  were obtained by Turbiner

(1984), but the terms beyond the order B2  appear to have errors. The formulas for the

states with n m= +| | 1 in parallel electric and magnetic fields were found by Vainberg et al

(1990). Here, we rewrite it putting the electric field to zero:

E
n

n
n B

n
n n B= − + + − + +1

2 8
1

48
12 27 14

2

3
2

4
2 4( )[ ( )

+ + + + +n
n n n n B

8
4 3 2 6

1152
216 1089 2048 1700 528( ) ] . (26)
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The expression (26) was derived by 1/n-expansion that is equivalent to the

"shifted" 1/m-expansion. Every term in (28) represent finite series in powers of 1/n. For

instance, the term of the order B4  is

− + + + = − ′′ + + +− − −n B
n n n

B

n
n n n

7 4
2

4

2
1 2 3

384
1 12 27 14

384
12 39 41 14( )( ) ( ) ,

where ′′ =B n B3  is a rescaled magnetic field strength that is similar to ′B , see equation

(4). So, it can be obtained exactly by summation of the first four terms of the 1/n-

expansion.

In the similar way we have derived the formulas for the states with n m= +| | 2  and

n m= +| | 3  corresponding in the limit n →∞  to excited states of the oscillator. Here, we

present them for the first time:

∆E
n

n B
n

n B
n

n n n B01

2
2 2

5
4

9
3 2 6

8
1

8
2 3

96
18 63 62 10= − − + + + + +( )[ ( ) ( ) ],

∆E
n

n n B
n

n n n B10

2
2

4
3 2 4

8
1 5

24
6 75 19 168= − + − + − +( )[( ) ( )

+ + + + − +n
n n n n n B

8
5 4 3 2 6

144
27 585 26 3649 1239 2772( ) ] ,

∆E
n

n n B
n

n n n B11

2
2

4
3 2 4

8
2 5

16
4 47 31 182= − + − + − +( )[( ) ( )

+ + − + − +n
n n n n n B

8
5 4 3 2 6

384
72 1449 1835 12372 12712 20856( ) ],

∆E
n

n n B
n

n n n n B20 02

2
2 2

6
4 3 2 4

8
3 7

128
4 39 105 199 238, ( ) ( )= + − − + − + −
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+ + − + − + −n
n n n n n n B

10
6 5 4 3 2 6

3072
72 1305 2877 10957 23250 25604 21912( )
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n n
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2 2
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+ − + −n
n n n n
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768
24576 90784 312128 817204(

+ − +1248835 1261972 7362362 4 1 2n n B) ] / (27)

where ∆E E nn n1 2
1 2 2= + /  is a Zeeman shift, and the indexes n1  and n2  denote the

quantum numbers of the oscillator. The correspondences with a principal quantum

number n and a quantum number k labeling the states inside a given diamagnetic

multiplet are n m n n= + + +| | 1 2 1  and k n= 2 . The form of the expansion for the pair of

states (20) and (02) is slightly different because of their degeneracy (inside a subspace of

given parity and m).
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Table 1. Branch points gc  for various pairs of states. Large-m

approximations (22) and (23) for m =100  are included in square

brackets

_________________________________________________________________
(10) - (02) (11) - (03) (10) - (04)

m Real Imaginary Real Imaginary Real Imaginary
______________________________________________________________________

10 0.253 651 0.106 016 0.157 41 0.154 97 0.552 0.016

20 0.336 797 0.083 470 0.284 337 0.137 521 0.666 9 0.007 0

30 0.366 535 0.069 959 0.331 033 0.117 927 0.706 83 0.003 99

50 0.390 962 0.055 155 0.369 482 0.094 246 0.739 417 0.001 931

100 0.409 628 0.039 446 0.398 841 0.067 928 0.764 264 0.000 703
[0.428 57] [0.039 83] [0.428 6] [0.069 0]

_________________________________________________________________
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Figure captions

Figure 1. The dependence of the scaled energy ~
E  on the coupling

parameter g for n m= +| | 1 states corresponding to the ground

state of the oscillator (n n1 2 0= = ). Chain curve is the border of

continuum spectrum corresponding to the lowest Landau

level ( ) /1 1 1 2+ −m g  shown for m =1.

Figure 2. The vibrational energy of the even parity states (solid lines)

and odd parity states (dashed lines) in the large m limit. The

curves are labeled by harmonic oscillator quantum numbers

n n1 2, .

Figure 3. The vibrational energy levels in m = 30  azimuthal subspace

obtained by summation of 1/m-expansion. The ionization

threshold is shown by chain line.

Figure 4. Similar to figure 3 but for m =10  subspace. The results of

the standard perturbation theory are shown by dotted lines.

Figure 5. The curves of the constant ratio ω ω1 2/  on the scaled (F, B)-

plane where Fermi-like resonances occur in parallel electric

and magnetic fields.
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