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Čı́žek et al.1 have suggested large-order Rayleigh
Schrödinger perturbation expansions as an alternative
variational methods for calculating molecular vibration e
ergy levels. The energyE(l) of an anharmonic oscillator
considered as a function of the perturbation parameterl, has
a complicated singularity at the origin in the complexl
plane,2,3 and therefore has a zero radius of convergen
Nevertheless, Cˇ ı́žek et al. found in practice that the expan
sions could be summed with Pade´ approximants. Recently
the computational cost of the perturbation theory was co
pared with that of variational diagonalization of the Ham
tonian for a model two-mode oscillator problem.4 It was
found that perturbation theory had a significant advant
over variational calculations in the number of arithmetic o
erations needed to obtain a given level of accuracy. Sca
arguments indicate that this advantage can be even gr
for rotating oscillators.5

However, there is a class of eigenstates for which
perturbation theory appears to fail: eigenstates involved
Fermi resonances, for which the wave functions show str
mixing of two or more of the unperturbed harmonic eige
functions. In the functionE(l) the resonant states are co
nected by branch points, with the different eigenvalues re
ing on different Riemann sheets.3 The closer the degenerac
of the harmonic energies, the closer the branch point is to
origin, and hence the greater the effect on the converge
Since Pade´ approximants are rational functions, which ca
not explicitly model the multiple-valued nature ofE(l),
they can have serious convergence problems in such ca

A simple solution to this problem is to usealgebraic
summation approximants. Consider an expansionE(l)
5(n50

` Enln. The conventional ‘‘linear’’ Pade´ approximant
is a functionE@L,M #(l)5PL(l)/QM(l) in terms of the poly-
nomialsPL andQM , of degreesL andM, respectively, de-
fined by the linear equation

P~l!2Q~l!E~l!5O~lL1M11!. ~1!

Similarly, algebraic approximantsE@p0 ,p1 , . . . ,pm# of arbitrary
degreem can be defined by
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Ak~l!E[ p0 ,p1 , . . . ,pm]
k ~l!50. ~2!

The Ak(l) are polynomials of degreepk that satisfy

(
k50

m

Ak~l!Ek~l!5O~lq!, q5m1 (
k50

m

pk . ~3!

These approximants were proposed by Pade´,6 but are not
nearly as well known as the linear approximants (m51).
Quadratic approximants (m52) have been used occasio
ally, especially for calculating the complex energies of u
stable quasibound eigenstates,4,7 but higher-degree approxi
mants have rarely been applied to physical problems.
have recently developed an algorithm for computing hig
degree approximants8,9 and have analyzed some of the
mathematical properties.9

Since Eq.~3! has m solutions forE(l), an algebraic
approximant of degreem.1 is a multiple-valued function
with m branches. Square-root branch points occur at th
values ofl for which two of the solutions become equal. F
quadratic approximants, for example, the singular points
simply the zeros of the discriminant polynomialA1

2

24A0A2 . If none of the branch points are close to the orig
or close to the physical value ofl, then linear approximants
should be adequate. However, if it is necessary to mo
branch points and the number of resonant states conne
by the branch points isN, then the degree of the approx
mants should chosen to be equal to or greater thanN.

We have computed perturbation series through 40th
der for the molecules H2O and H2S, with the anharmonic
oscillator Hamiltonians used by Cˇ ı́žek et al.1 Table I com-
pares the harmonic frequencies. For the ground states an

TABLE I. Harmonic vibrational frequencies, in cm21.

v1 v2 v3

H2O 3832.0 1648.9 3942.6
H2S 2721.9 1214.5 2733.3
5 © 1999 American Institute of Physics
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singly excited states the rate of convergence shows no ap
ciable dependence onm. However, for the~200! state of
H2S, which is strongly resonant with the nearly degener
~002! state, the convergence is much more rapid form.1
than for m51, as shown in Fig. 1. There seems to be
advantage to usingm>3 beginning at 30th order. The con
vergence behavior is similar for the~002! state. The branch
point at which these two states become degenerate i
l50.600 9660.288 37i. ~The physical solution correspond
to l51.! For H2O them51 approximants for the~200! state
show no convergence problems. However, for the~400!
state, in Fig. 2, which seems to involve a resonance o
least three states, they converge relatively slowly. The c
vergence is better form>2, with an advantage form>3
beginning at 26th order.

High-degree approximants have the additional advant

FIG. 1. Summation convergence vs orderk of the perturbation expansion fo
the ~200! state of H2S. The ordinate is2 log10u(Sk2E)/Eu, which is a
continuous measure of the number of converged digits, whereSk is the
algebraic approximant corresponding to orderk of the diagonal staircase
approximant sequence andE58522.5667 cm21 is the result to which 40th-
order perturbation theory seems to converge.~The last digit inE is uncer-
tain.! The degrees of the approximants are as follows:m51 ~– – –!, m
52 ~—!, m53 ~n!, m54 ~L!.
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of being able to model complicated singularities at thel
→0 andl→` limits,9,10 which are generic features of an
harmonic oscillator energies, but this advantage is reali
only if the perturbation series is known to rather high orde9

For the 40th-order expansions considered here we find
the high-degree (m>3) approximants noticeably outperform
the quadratic approximants only for states involved in Fe
resonances. This indicates that the source of their advan
is not the behavior atl→0 or l→` but rather the accuracy
with which they model the resonance branch points.
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FIG. 2. Summation convergence vs order for the~400! state of H2O. The
ordinate is defined as in Fig. 1 and the converged energy isE
519 538.4 cm21. ~The last digit is uncertain.! The degrees of the approxi
mants arem51 ~– – –!, m52 ~—!, m53 ~n!, m54 ~L!.


