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Cizek etall have suggested large-order Rayleigh— m
Schralinger perturbation expansions as an alternative to 2 Ak(A)EFpo,pl
variational methods for calculating molecular vibration en- k=0
ergy levels. The energ(\) of an anharmonic oscillator, The A (\) are polynomials of degrep, that satisfy
considered as a function of the perturbation parametbas " m
a complicated singularity at the origin in the compl&x
plane?® and therefore has a zero radius of convergence. ,;0 AVE (M) =009, q=m+k20 Pic- ®)
Nevertheless, ek et al. found in practice that the expan- ) i
sions could be summed with Padpproximants. Recently These approximants were proposed by Fadet are not
the computational cost of the perturbation theory was comb€arly as well known as the linear approximants=<(1).
pared with that of variational diagonalization of the Hamil- Quadratic approximantsn{=2) have been used occasion-
tonian for a model two-mode oscillator problénit was ~ ally, especially for calculating the complex energies of un-
found that perturbation theory had a significant advantagét@ble quasibound elgenstafégbut higher-degree approxi-
over variational calculations in the number of arithmetic op-mants have rarely been applied to physical problems. We
erations needed to obtain a given level of accuracy. Scalinfave recently developed an algorithm for computing high-
arguments indicate that this advantage can be even greatgfdree ar_)DfOX'marﬁg and have analyzed some of their
for rotating oscillators. mathematical properti€s. _ _

However, there is a class of eigenstates for which the ~ Since Eq.(3) hasm solutions forE(A), an algebraic
perturbation theory appears to fail: eigenstates involved igPProximant of degreen>1 is a multiple-valued function
Fermi resonances, for which the wave functions show stron¥/ith m branches. Square-root branch points occur at those
mixing of two or more of the unperturbed harmonic eigen-values Qf)\ for Wh!Ch two of the solutions bec;ome equa_ll. For
functions. In the functiorE()\) the resonant states are con- quadratic approximants, for example, the singular p0|n2ts are
nected by branch points, with the different eigenvalues resigsimply the zeros of the discriminant polynomiah;
ing on different Riemann sheetghe closer the degeneracy ~4AoAz. If none of the branch points are close to the origin
of the harmonic energies, the closer the branch point is to th@r” close to the physical value af then linear approximants

origin, and hence the greater the effect on the convergencéhould be adequate. However, if it is necessary to model
Since Padepproximants are rational functions, which can-0ranch points and the number of resonant states connected

(V=0 2)

not explicitly model the multiple-valued nature @&(\), Py the branch points i, then the degree of the approxi-
they can have serious convergence problems in such case§lants should chosen to be equal to or greater tian
A simple solution to this problem is to usagebraic We have computed perturbation series through 40th or-

=>*_,E.\". The conventional “linear” Padapproximant oscillator Hamiltonians used byizek et al* Table | com-

is a functionE;_y;(\) =P (A\)/Qu()) in terms of the poly- ~ Pares the harmonic frequencies. For the ground states and for
nomialsP, andQ,,, of degreed. and M, respectively, de-

fined by the linear equation TABLE . Harmonic vibrational frequencies, in crh
P()\)_Q(A)E()\):O()\L+M+1)- D w3 oP) w3
o ; : ; H,0 3832.0 1648.9 3942.6
Similarly, algebraic approximants, o . Pl of arbitrary HS 27219 12145 2733.3

degreem can be defined by
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FIG. 1. Summation convergence vs oréef the perturbation expansion for
the (200 state of HS. The ordinate is—log,d(Sc—E)/E|, which is a
continuous measure of the number of converged digits, wBgrs the
algebraic approximant corresponding to ordteof the diagonal staircase
approximant sequence aifi=8522.5667 cm! is the result to which 40th-
order perturbation theory seems to conver@de last digit inE is uncer-
tain) The degrees of the approximants are as folloms:1 (— — -, m
=2 (—), m=3 (A), m=4(0).
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FIG. 2. Summation convergence vs order for {460 state of HO. The
ordinate is defined as in Fig. 1 and the converged energyEis
=19538.4cm'. (The last digit is uncertain The degrees of the approxi-
mants arean=1 (- — -, m=2 (—), m=3 (A), m=4 ().

of being able to model complicated singularities at the
—0 and\—o limits,%1° which are generic features of an-
harmonic oscillator energies, but this advantage is realized
only if the perturbation series is known to rather high ortler.
For the 40th-order expansions considered here we find that
the high-degreert=3) approximants noticeably outperform
the quadratic approximants only for states involved in Fermi
resonances. This indicates that the source of their advantage
is not the behavior at—0 or A —oo but rather the accuracy
with which they model the resonance branch points.
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singly excited states the rate of convergence shows no appre-

ciable dependence om. However, for the(200 state of

H,S, which is strongly resonant with the nearly degenerate.

(002 state, the convergence is much more rapidrfor 1
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