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ABSTRACT: We study destabilization of an atom in its ground state with decrease of
its nuclear charge. By analytic continuation from bound to resonance states, we obtain
complex energies of unstable atomic anions with nuclear charge that is less than the
minimum “critical” charge necessary to bind N electrons. We use an extrapolating scheme
with a simple model potential for the electron, which is loosely bound outside the atomic
core. Results for O2− and S2− are in good agreement with earlier estimates. Alternatively,
we use the Hylleraas basis variational technique with three complex nonlinear parameters
to find accurately the energy of two-electron atoms as the nuclear charge decreases.
Results are used to check the less accurate one-electron model.
c© 2001 John Wiley & Sons, Inc. Int J Quantum Chem 82: 255–261, 2001
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1. Introduction

T here has long been an interest in the existence
of long-lived doubly charged negative atomic

ions [1 – 4]. The possibility of doubly charged neg-
ative ion resonances has been raised in the case of
oxygen by experiments of Peart et al. [5] who ob-
served resonance-like structures in electron-impact
detachment cross section at energies of 19.5 and
26.5 eV. A Hartree–Fock calculation of the closed-
shell electronic configuration shows that the reso-
nance energy of O2− is about 8 eV above O−, which
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later was confirmed and modified by configura-
tion interaction and other methods [2]. Sommerfeld
et al. [6] performed a large-scale multireference
configuration interaction calculation ion using the
complex rotation technique to investigate resonance
states of H2−. Their results predict the existence of
a (2p3)4S resonance state of H2− with a resonance
position of about 1.4 eV above the (2p2)3P state of
H− and a lifetime of 3.8 × 10−16 [7], which was
confirmed later by complex coordinate rotation cal-
culations of Bylicky and Nicolaides [8]. Recently,
the multireference configuration interaction calcu-
lations using the complex absorbing potential were
performed for O2−, S2−, B2−, and Al2− [9]. No ex-
perimental evidence of existence of dianions was
found, probably due to insensitivity of scattering
processes to dianionic resonances. But, in principle,
these resonances could be observed in some scatter-
ing experiments [9].
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In this work, we consider an N-electron atom in
its ground electronic configuration state with the
nuclear charge Z as a variable. Integer values of Z
with Z > N correspond to positive ions, with Z < N
to negative ions and with Z = N to neutral atoms,
where N is the number of electrons. A complex en-
ergy of a doubly charged negative ion (Z = N − 2)
is found by extrapolating the ionization energy into
the instability region of nuclear charges less than
some critical nuclear charge Zc. We use the reliable
data for the ionization energy of a neutral atom
(Z = N) and its isoelectronic negative ion (Z =
N − 1), which were calculated or experimentally
measured.

The simplest extrapolations by polynomial fits
[10, 11] or by analytic formulas with a few fitting
parameters [12, 13] give the real negative binding
energy for closed-shell anions such as O2− or S2−.
Extrapolating formula of Herrick and Stillinger [10]
includes a singular 3/2 power term and gives both
positions and widths of the dianions. Although it
correctly models a similar singularity of the energy
calculated by a variational method, it fails for the ex-
act energy, which has a less trivial singularity [14].

In our approach, we use the one-electron model
to approximate movement of a weakly bound elec-
tron that is going to escape when the charge ap-
proaches the critical charge. Free parameters of the
model are fit in order to reproduce correctly the
binding energies of a neutral atom and its iso-
electronic anion. Since the existence of one loosely
bound electron is a realistic approximation in the
vicinity of the critical charge, we believe that the
model realistically reproduces the nontrivial singu-
larity at Z = Zc [15]. Earlier, this model was used to
determine the critical charges by finding zeroes of
the binding energy [16]. It was found that the criti-
cal charges never drop below N−3/2. The maximal
surcharge defined as Se = N − Zc was found for
Rn isoelectronic series and is equal to 1.48. Here, we
extrapolate the ionization energy deeper into the in-
stability region, to Z = N − 2, corresponding to a
di-anion.

Although various model interaction potentials
for a scattering state of Z+2 electrons can realistically
describe a process of electron-impact detachment
from a negative ion (see [17] and references therein),
applicability of model potentials for a resonant state
of Z + 2 electrons remains to be studied. There is
a common belief that due to a strong correlation
effect among several equivalent electrons the un-
derlying physics is much more complicated than a
simple model could suggest, and full-scale calcu-

lations with multielectron trial wave functions are
unavoidable. For H2−, there were studies of po-
tential curves in the framework of hyperspherical
coordinates [18] and studies of the interaction be-
tween the Nth electron and the (N − 1)-electron
target including exchange interaction [19].

In this work, we attempt for the first time
to model an unstable multielectron dianion by a
suitable one-electron potential. The underlying as-
sumption and the mapping of an atomic system
with a weakly bound electron to a one-particle sys-
tem with a screened Coulomb potential is discussed
in the next section. In Section 3, we find an ap-
proximate dependence of the energy on the nuclear
charge by extrapolation from the known energies of
a neutral atom and the corresponding negative ion.
Energies and widths of doubly negative ions for iso-
electronic series exhibiting a bound singly charged
anion are evaluated systematically for N ≤ 18. Ac-
curacy of the model is estimated by comparison of
the model results with exact numerical results at
Z < Zc for helium isoelectronic series. Section 4 is
a summary and conclusion.

2. Description of One-Electron Model

A variational study of the helium isoelectronic
series using the Chandrasekhar trial wave func-
tion e−a1r1−a2r2 − e−a1r2−a2r1 [20] shows that a1/a2 ≤ 2
if Z ≥ 2, where a2 is the smallest among the two
variational parameters a1 and a2, in a reasonable
agreement that both electrons occupy equivalent
orbitals in helium and two-electron positive ions.
The ratio of the exponents increases as the nuclear
charge decreases and reaches 3.7 for a negative hy-
drogen ion (Z = 1). It means that the orbital of one
of electrons inflates in comparison with the orbital
of another electron.

A similar variational study of the beryl-
lium isoelectronic series using the function
e−a1r1−a2r2−a3r3−a4r4 properly symmetrized over
coordinates and spin functions shows that a3 = a4

for beryllium and four-electron positive ions, but
a3/a4 = 2.4 for the negative ion of lithium where a3

and a4 are the smallest exponents corresponding to
outer electrons, and a3 ≥ a4 (a3 6= a4 if Z ≤ 3.25).
Variational study of the neon isoelectronic series
by Herrick and Stillinger [10] shows a similar
diffusivity of the outer orbital for F− (Z = 9) and for
charges slightly less than 9 (0.111 < Z−1 ≤ 0.118).

We expect that for N-electron atom in general,
the outer electronic shell undergoes a profound
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change when the charge decreases and reaches val-
ues around N − 1, so that for a negative ion one of
the electrons is held much farther from the nucleus
than the others. We admit that some exceptions from
this rule are possible. Consider, for example, the H2−
resonance studied in [7, 8]. It has (2p3)4S electronic
configuration corresponding to the excited state of
the isoelectronic Li. In this system, three electrons
occupy three different p orbitals. Since these orbitals
are spatially separated along three different axes,
three electrons are relatively weakly interacting be-
tween themselves. In fact, no electron is pushed out
to a loosely bound orbital, so all electrons are equiv-
alent. But at least for atoms in the ground state with
an even number of electrons, the last two electrons
occupy the same spatial orbital, and we expect that
they become unequivalent when the electron repul-
sion becomes sufficiently strong in comparison with
the attraction to the nucleus.

For a given atom with N electrons and a nuclear
charge Z, let us consider a spherically symmetric
potential (also known as Hellmann potential [21])
of the form

V(r) = −1
r
+ γ

r

(
1− e−δr

)
(2.1)

with γ = (N − 1)/Z.
To extrapolate the ionization energy, we sug-

gest here a one-particle model of the outer electron
responsible for ionization process moving in an ef-
fective potential of the atomic core comprising of the
nucleus and N − 1 electrons. In scaled coordinates
r→ Zr, this potential is approximated by our model
potential, Eq. (2.1). Our approximation is asymptot-
ically correct both at small and at large distances
from the nucleus where the scaled atomic core po-
tential tends to −1/r and to −(Z − N + 1)/(Zr),
respectively. The transition between the two differ-
ent asymptotic regimes occurs at distances roughly
equal to 1/δ, which is about the atomic core radius.

The second parameter of the model potential,
Eq. (2.1), δ, is chosen so that the ionization energy
in the potential (2.1) is equal to the scaled ionization
energy Z−2EI(Z) of the atom. For atoms with more
than two electrons, we consider here an excited
state in the potential (2.1) with the same spherical
quantum numbers (n, l) as quantum numbers of the
loosely bound electron on an external atomic shell
(in this aspect our approach differs from the method
of pseudo-potentials [22] that deals with the ground
state in a potential with an additional repulsive term
necessary to satisfy orthogonality conditions). In
this way, we map an arbitrary atom, which is char-
acterized by a pair of numbers (N, Z) to the model

one-particle system (2.1), which is characterized by
a pair of parameters (γ , δ). Results of fitting the pa-
rameter δ for elements with N ≤ 10 in our previous
study [16] give evidence that δ depends on 1/Z al-
most linearly.

In summary, our model (2.1) effectively elimi-
nates the singularity in the energy function EI(Z) to
be extrapolated by replacing it with a weakly vary-
ing function δ(Z) that can be accurately extrapolated
by a linear dependence on 1/Z without taking into
account a complex singularity at Z = Zc. In our
previous study [16], we fitted the parameter δ to
meet the known binding energy of the neutral atom
and its isoelectronic negative ion and then found δ

as a function of 1/Z by a linear extrapolation. Af-
ter that, we solved the Schrödinger equation with
the potential (2.1) and found some kind of extrap-
olation of the ionization energy of an atom to the
range of Z < N − 1. Finally, by locating a zero of
the ionization energy, we found critical charges for
most of atoms with N ≤ 86. In the present work, we
use the same technique to find resonances of doubly
charged negative ions by calculating the ionization
energy at Z = N − 2.

3. Results

For two-electron isoelectronic series, the parame-
ter δ is 1.066 and 0.881 for He and H−, respectively.
Decreasing of δ for H− means increasing of the
core radius that is induced by stronger repulsion
between electrons. Results of extrapolating the ion-
ization energy to the range Z < 1 with δ assumed as
a linear function of 1/Z are shown in Figure 1.

To verify our approximation, we performed more
accurate variational calculations using the Hylleraas
trial wave function of the form

ψN =
∑

i+j+k≤N

Ci,j,k
[
ri

1rj
2 exp(−ar1 − br2)

+ ri
2rj

1 exp(−ar2 − br1)
]
rk

12 exp(−cr12). (3.1)

First, we found the energy of the negative ion of
hydrogen (Z = 1) by minimization of the energy
functional with respect to three nonlinear parame-
ters a, b, c, and the coefficients Ci,j,k. In agreement
with our model of unequivalent electrons, the expo-
nents a and b typically differ by a factor of two or
three. For smaller charges (Z < 1), the energy was
determined by finding a stationary point of the en-
ergy functional instead of its minimum. At each step,
the charge was decremented by a small amount
∼10−3, and new coordinates of the stationary point

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 257



SERGEEV AND KAIS

FIGURE 1. Ionization energy for the helium
isoelectronic series as a function of the nuclear charge
including an instability region Z < Zc. Bold lines are
accurate results found by the variational method with a
large basis set. Thin lines are results of the simplified
one-particle model described in Section 2. Solid and
dashed lines are real and imaginary parts, respectively.

were calculated by an iteration procedure taking co-
ordinates of the stationary point from the previous
step as an initial guess to search a changed station-
ary point (for slightly decreased charge). In this way,
we found that the optimized parameters a, b, and c
are real for sufficiently large charges. If the charge
is lower than some value, then the minimum of the
energy functional disappears and turns to a com-
plex stationary point (this feature is typical for any
system passing from a bound to a quasi-stationary
state that is treated variationally, for example, for
Ne isoelectronic series with a nuclear charge below
Zc = 8.74 [10]). We found numerically the parame-
ters a, b, c, and corresponding energy in the range
0 ≤ Z ≤ 1 with N up to 5.

The above method is a more general version of
the complex rotation or the complex stabilization
method [23]. Instead of one nonlinear complex vari-
ational parameter, the rotation angle, we are using
three nonlinear variational parameters a, b, and c.
Junker [24] used a similar variant of the complex
stabilization method with several nonlinear varia-
tional parameters. Like the method of Junker [24],
our method gives correct resonance energies with-
out taking into account an asymptotical form of the
resonant wave function, or imposing specific con-
strains on the parameters a, b, and c.

We used the complex parameters a, b, and c cal-
culated for the particular case of N = 5 in order
to extend calculations to higher N by optimizing

only the linear coefficients Ci,j,k. “Almost exact” vari-
ational energy calculated at N = 25 differs from the
variational energy at N = 5 in the amount of less
than 10−4. It is compared in Figure 1 with results of
one-electron model calculations. The real part of the
ionization energy is always negative at 0 < Z < Zc.
It reaches its minimum at Z ≈ 0.5, and the width
reaches its maximum approximately at the same
point. For small Z, convergence of the variational
method becomes worse. It seems that both real and
imaginary parts tend to zero when Z→ 0.

As expected, the one-electron model gives fairly
accurate results in the vicinity of the critical charge
where it models the threshold singularity. Here, the
real part is approximated more accurately than the
imaginary part because the singularity manifests
mostly in the imaginary part.

Dubau and Ivanov [14] calculated the two-
electron atom resonance in the vicinity of the crit-
ical charge using 1/Z expansion and the complex
rotation method. Their results agree with our calcu-
lation; see Table I. Since in the latter case the charge
is close to the critical charge, we slightly corrected
location of the singularity in our model by fitting δ
at points Z = Zc = 0.911028225 and Z = 2 instead of
fitting it at points Z = 1 and Z = 2.

For isoelectronic series of Li in its ground state
(1s22s)2S, our model cannot be used because He−
does not exist in the (1s22s)2S state. However, in
the excited (2p3)4S state the negative ion He− is
bound nonrelativistically. We tried to use our model
for this excited state by taking the ionization ener-
gies as a difference between the energies of (2p3)4S
states listed in [25] and the energies of (2p2)3P states
with the same Z listed in [26]. The parameter δ is
0.239 and 0.204 for Li and He−, respectively. Ex-
trapolation of the ionization energy to the range
Z < 2 by the method described in Section 2 shows
that EI(Z) is zero at Z = 1.92, and it has mini-
mum at Z ≈ 1.3, while the width has maximum at

TABLE I
Resonances in the helium isoelectronic series for
charges below the critical charge.

−Z−2 Im E −Z−2 Im E
1/Z −Z−2 Re E −Z−2 Im E (CRM [14]) (model)

1.11 0.497131 0.000050 0.00006 ∼0.00003
1.12 0.494953 0.000286 0.00028 0.00024
1.13 0.492792 0.000686 0.00070 0.00057
1.14 0.490616 0.001207 0.00121 0.00098
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Z ≈ 1.4. For H2−, our extrapolation gives EI(1) =
−0.029 + 0.00002i (a.u.). Our values for the po-
sition of the resonance −ReEI and its half-width
ImEI are considerably lower than results of com-
plex rotation calculations [8], EI = −0.053 + 0.031i.
It is likely that our extrapolation becomes poorer
as the charge drops below the point where the
extrapolation has a minimum, as it can be seen
on Figure 1 for heliumlike ions. A simple three-
point quadratic extrapolation gives EI(1) ≈ 3EI(2)−
3EI(3) + EI(4) = −0.0298, which is very close to
the prediction of our model, while an extrapolation
with use of Eldén’s [12] three-parameter formula
does not work because it has a nearby pole at
Z ≈ 1.3. It seems that any extrapolation over the
parameter 1/Z from stable to unstable anions is
unreliable for light atoms because 1/Z differs con-
siderably for singly and doubly negative ions if N is
small.

For four-electron isoelectronic series, results of
using our model for extrapolating the ionization en-
ergy are shown in Figure 2. We found that the curve
hits the border of continuum spectrum EI = 0 at
Zc = 2.864 [16] and again at Z′c = 2.17. Very small
imaginary part exists in the interval Z′c < Z < Zc.
The extrapolation gives positive ionization energy
for He2−, EI = 0.064. Since a bound state of He2−
does not exist, it means that we deal with a virtual
state with an exponentially growing wave function
(corresponding to a pole of the scattering function
on the second sheet of the Riemann surface). It may
be also possible that because of its limitations our

FIGURE 2. Ionization energy for the beryllium
isoelectronic series extrapolated from bound systems Be
and Li− to a resonance state of He2−. A dashed line is
an imaginary part of the energy times 100. The system
He2− with a zero imaginary part is presumably in a
virtual state.

method fails for the He2− ion. We found positive
ionization energies for another doubly charged neg-
ative ions of noble gases, for example, Ne2− (see
Table III).

The doubly charged negative ion of atomic oxy-
gen in the same electronic configuration as a closed-
shell 10-electron configuration of a neutral atom of
neon was extensively studied theoretically. Com-
parison of the ionization energy of O2− found by
different methods is given in Table II. For critical

TABLE II
Energy of O2− resonance calculated by various methods.

Reference Method −EI (eV)

Clementi and McLean [27] Hartree–Fock 8.30
Huzinaga and Hart-Davis [28] Hartree–Fock–Roothaana 7.68
Cantor [29] Combining thermochemical data 7.94
Herrick and Stillinger [10] Extrapolating formula including 3/2 power term 5.38–0.65i

Eldén’s [12] three-parameter formula 5.31
Kaufman’s [13] two-parameter formula 7.17
Kaufman’s [13] three-parameter formula 6.53
Quadratic fit 7.09

Gadzuk and Clark [30] Extrapolating of isoelectronic cases 8.8
Robicheaux et al. [11] Polynomial fit 7.2b

Sommerfeld [9] Complex absorbing potential 5.77–0.87i
Present work One-particle model 7.65–0.22i

a Huzinaga and Hart-Davis listed the total energy. We found ionization energy by subtracting the Hartree–Fock total energy of the
corresponding singly charged negative ion that is listed in works of Clementi et al. [27, 31].
b Estimated width is greater than 1 eV.

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 259



SERGEEV AND KAIS

FIGURE 3. Ionization energy for neon isoelectronic
series extrapolated from bound systems Ne and F− to a
resonance state of O2−. A dashed line is an imaginary
part of the energy, which is half-width of the level.

discussion of some of these results, see [10]. Our re-
sult for the resonance position is in agreement with
most of the above results. However, our prediction
of the resonance width is significantly lower than
that of Herrick. It may be attributed to the fact that
Herrick’s 3/2-power term, which is responsible for
the width, is far from the actual singular behavior
or to the fact that our model systematically under-
estimates the width as it happens for two-electron
atoms. Recent multireference configuration inter-
action calculations of Sommerfeld [9] predict still
larger width. However, this prediction may be only
an upper bound to the true resonance width because
of possible missing correlation effects that stabilize
the metastable state [9]. The extrapolated ionization
energy as a function of Z is shown in Figure 3. It has
a relatively small nonlinear distortion and a weak
singularity at Zc = 8.75.

We extended calculations of resonances of dou-
bly charged negative ions to the first two rows of the
periodic table. Here, we considered only the ions for
which an isoelectronic singly charged negative ion
is stable, for example, we omitted C2− because N−
does not exist. Results are listed in Table III. For the
closed-shell ion S2−, our result for the resonance po-
sition −ReEI is somewhat larger than the previous
estimates.

Herrick and Stillinger [10] suggested that stabil-
ity of negative ions increase with decreasing of γ =
(N − 1)/Z, or the effective charge seen asymptoti-
cally by the outer electron. A greater stability would
then be expected for the S2− ion (γ = 1.0625) than
for the O2− ion (1.125). Our results for half-width of

TABLE III
Energies of doubly charged negative ions.a

Z −EI (eV) Lifetime (10−14 s)

2He2− −1.73
4Be2− 3.43 1.1
5B2− 4.88 0.3

3.95b 0.036b

6C2− 6.11c

7N2− 7.48 0.12
7.97d

7.07c

10Ne2− −0.92
12Mg2− 1.79
13AI2− 3.44 3.0

3.02b 0.067b

14Si2− 4.76 0.5
4.12c

15P2− 4.95 0.5
4.47c

16S2− 4.91 0.7
3.90b 0.071b

4.62c

4.7e

a Tabulated energies are results of the present work unless
marked otherwise. For energy of O2− ion, see Table II.
b Complex absorbing potential method of Sommerfeld [9].
c Hartree–Fock–Roothaan calculations of Huzinaga and Hart-
Davis [28].
d Hartree–Fock calculations of Clementi and McLean [27].
e Polynomial fit of Robicheaux et al. [11].

S2− and O2−, 0.045 and 0.22 eV, respectively, as well
as results of Sommerfeld [9] (0.45 and 0.87 eV) sup-
port this argument. However, the widths for B2−,
Al2−, S2− calculated by Sommerfeld [9] are larger
than our results by one order in magnitude.

4. Discussion

We have investigated the existence of resonance
states for doubly charged atomic negative ions by
considering the behavior of the ground state with
a decrease of the nuclear charge. When the charge
drops below the critical charge, the bound state
goes into a complex plane and becomes a resonance.
We attempt to approximate reasonably accurate the
function EI(Z) in the vicinity of the critical charge Zc

where it exhibits a singularity. Approximating of
isoelectronic ionization potentials by simple ana-
lytic formulas with several adjustable constants was
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widely used before appearance of powerful com-
puters more than 40 years ago. However, these
formulas seem inadequate for negative ioniza-
tion potentials, which are complex-valued, with
an imaginary part meaning a half-width. Her-
rick and Stillinger [10] introduced a singular term
∼(Z− Zc)3/2 to their extrapolating scheme to ap-
proximate the complex energy at Z < Zc.

Our method is some kind of refinements of Her-
rick and Stillinger method of analytic continuation.
We believe that our model reproduces the threshold
singularity of the energy more realistically than the
3/2-power singularity of Herrick and Stillinger be-
cause it is based on a physical model that is realistic
at Z ≈ Zc. Generally, the method of analytic contin-
uation from bound to resonance states appears very
accurate when the threshold behavior of the energy
is incorporated into continuation scheme, as it was
demonstrated earlier for two-particle resonances in
nuclear physics; see Chapter 5 of Ref. [32].

The developed method was checked for a two-
electron atom, for which the Hylleraas basis varia-
tional technique gives reliable results. Position and
width of the resonance were compared with a pre-
diction of the less accurate model approximation.
Results were found in agreement.

The results of our approximate one-electron
model agree with earlier estimates of closed-shell
resonances of O2− and S2−. In addition, the model
predicts similar resonances other dianions that are
isoelectronic to some bound singly charged anion.

Our model invites further generalizations, for
example, by considering a motion of two weakly
bound electrons instead of only one.

Although no multiple negative ions exist in a
bound state [16, 33, 34], some long-lived resonances
of doubly negative ions are observed experimen-
tally [1]. Our results give evidence for some reso-
nances that remain to be observed.
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