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ABSTRACT: One-particle model with a spherically-symmetric screened Coulomb
potential is proposed to describe the motion of a loosely bound electron in a multielectron
atom when the nuclear charge, which is treated as a continuous parameter, approaches
its critical value. The critical nuclear charge, Z , is the minimum charge necessary to bindc
N electrons. Parameters of the model are chosen to meet known binding energies of the
neutral atom and the isoelectronic negative ion. This model correctly describes the
asymptotic behavior of the binding energy in the vicinity of the critical charge, gives
accurate estimation of the critical charges in comparison with ab initio calculations for
small atoms, and is in full agreement with the prediction of the statistical theory of large
atoms. Our results rule out the stability of doubly charged atomic negative ions in the
gas phase. Moreover, the critical charge obeys the proposed inequality, N y 2 F Z Fc
N y 1. We show that in the presence of a strong magnetic field many atomic dianions
become stable. Q 1999 John Wiley & Sons, Inc. Int J Quant Chem 75: 533]542, 1999
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Introduction

he question of stability of a given quantumT system of charged particles is of fundamental
importance in atomic, molecular, and nuclear
physics. When the charge of one of the particles
varies, the system might go from stable to
metastable or to unstable configurations. Consider,
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for example, the ground-state energy of the two-
electron atom as a function of the nuclear charge
Z. Positive integer nuclear charges correspond to

y Ž . Ž .stable systems such as H Z s 1 , He Z s 2 ,
q Ž .Li Z s 3 , etc. However, when the charge is less

than the critical charge Z s 0.911, the minimumc

charge necessary to bind two electrons, the ground
state, ceases to exist and becomes absorbed by the

w xcontinuum 1, 2 .
The calculation of the critical nuclear charge, Z ,c

w xfor two-electron atoms has a long history 1, 3, 4
with controversial results of whether or not the
value of Z is the same as the radius of conver-c

gence, ZU , of the perturbation series in 1rZ. Baker
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w xet al. 2 have performed a 400-order perturbation
calculation to resolve this controversy and found
that ZU is equal to Z , which is approximatelyc

w x0.911. For N-electron atom, Lieb 5 proved that
the number of electrons, N , that can be bound toc

an atom of nuclear charge, Z, satisfies N - 2Z qc

1. With this rigorous mathematical result, only the
instability of the dianion H 2y has been demon-

w xstrated 5 . For larger atoms, Z ) 1, the corre-
sponding bound on N is not sharp enough to bec

useful in ruling out the existence of other dianions.
w xHowever, Herrick and Stillinger 24 estimated the

critical charge for neon isoelectronic sequence, Zc
w x, 8.74. Cole and Perdew 6 also confirmed this

result for N s 10 by density functional calcula-
tions and ruled out the stability of O2y. In a
previous publication, we used Davidson’s tables of
energies as a function of Z to estimate the critical

w xcharges of atoms up to N s 18 7 . However,
Hogreve used large and diffuse basis sets and
multireference configuration interaction to calcu-
late the critical charges for all atoms up to N s 19
w x8 .

w xRecently, Serra and Kais 9, 10 found that one
can describe stability of atomic ions and symmetry
breaking of electronic structure configurations as
quantum phase transitions and critical phenom-

w xena. This analogy was revealed 9 by using the
large dimensional limit model of electronic struc-

w xture configurations 11 . Quantum phase transi-
tions can take place as some parameter in the
Hamiltonian of the system is varied. For the
Hamiltonian of N-electron atoms, this parameter
is taken to be the nuclear charge. As the nuclear
charge reaches a critical point, the quantum ground
state changes its character from being bound to
being degenerate or absorbed by a continuum. For
two- and three-electron atoms, we have used the
finite-size scaling method to obtain the critical
nuclear charges. The finite-size scaling method was
formulated in statistical mechanics to extrapolate
information obtained from a finite system to the

w xthermodynamic limit 12, 13 . In quantum mechan-
ics, the finite size corresponds to the number of
elements in a complete basis set used to expand
the exact wave function of a given Hamiltonian
w x14, 15 . For the two-electron atoms with the con-
figuration 1s2, the critical charge was found to be
Z , 0.911. The fact that this critical charge is be-c

low Z s 1 explains why Hy is a stable negative
w xion 16 . For the three-electron atoms the critical

nuclear charge for the ground state was found to

be Z , 2, which explains why the Hey and Hy2
c

w xare unstable negative ions 17 .
Here we use a simple one-particle model to

estimate the nuclear critical charge for any N-elec-
tron atom. This model has one free parameter
which was fitted to meet the known binding en-
ergy of the neutral atom and its isoelectronic nega-
tive ion. The critical charges are found for atoms

Ž .up to Rn N s 86 . For N F 18, our results are in
good agreement with the configuration interaction

w xcomputations of Hogreve 8 . In the following sec-
tion we introduce the one-particle model and the
methods to solve for the energies as a function of
the nuclear charge. The third section gives the
mapping of the multielectron atom to the one-par-
ticle model. The effect of the magnetic field on the
stability of atoms is given in the fourth section.
Finally, we discuss the stability of doubly charged
atomic ions and ways to extend this model to
molecular systems.

One-Particle Model

Superposition of the Coulomb and Yukawa po-
w xtentials, known as the Hellmann potential 18 , is

widely used to represent interactions in atomic,
w xmolecular, and solid-state physics 19, 20 . Here,

the model potential with two parameters g and d ,

1 g
yd rŽ . Ž . Ž .V r s y q 1 y e 1

r r

is used to approximate the interaction between a
loosely bound electron and the atomic core in a
multielectron atom.

Let us consider an N-electron atom with a nu-
clear charge Z. In atomic units, the potential of
interaction between the loose electron and an
atomic core consisting of the nucleus and the other
N y 1 electrons tends to yZrr at small r and to
Ž .yZ q N y 1 rr at large r. After the scaling trans-
formation r ª Zr, the potential of interaction be-
tween two electrons is lrr with l s 1rZ, andi j
the potential of interaction between an electron
and the nucleus is ylrr . In these scaled units thei
potential of interaction between a valence electron
and a core tends to y1rr at small r and tends to
Ž . Ž .y1 q g rr with g s N y 1 l at large r. It is

Ž .easy to see that the model 1 correctly reproduces
such an effective potential both at small r and at
large r. The transition region between y1rr be-

Ž .havior and y1 q g rr behavior has the size of
the core that is about 1rd .
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Ž .Eigenvalues of the potential 1 were found by
two independent methods. The first method is a
numerical method: solving the Sturm]Liouville
eigenvalue problem by integration of the differen-
tial equation. The energies can be easily calculated
for any quantum numbers n, l and any parameter
g , d as long as the state is bound. The second
method is a perturbation method in the small

Ž .parameter, d . The potential Eq. 1 is expanded in
a power series of the form

1 1 1
2 2 3Ž .V r s y q gd y g rd q g r d

r 2 6
1

3 4 Ž .y g r d q ??? , 2
24

where the zero-order term is the Coulomb poten-
tial. The zero-order energy is given by the Rydberg

1 2formula E s n . To calculate the higher-order0 2

corrections, we used the Rayleigh]Schrodinger¨
perturbation theory for the screened Coulomb po-
tential. The result can be represented as a power
series in d :

`1
i Ž .E s y q E d , 3Ý i22n is1

w xwhere the coefficients E are calculated 21 up toi
high orders i ; 100.

3 12 Ž .E s g , E s y n q l l q 1 g ,1 2 4 4 Ž .4
1 12 2 Ž .E s n n y l l q 1 y g , . . .3 2 2

Ž .The series in Eq. 3 can be summed by using
quadratic Pade approximants that considerably ac-´
celerate the convergence and allow us to find com-
plex energies of resonances when the perturbation

w xparameter is sufficiently large 22 . For bound
states, the results of Pade summation are the same´
as the one found by the numerical integration
method.

Results for the ground and excited 2 p states as
a function of g for several values of d are shown
in Figures 1 and 2, respectively. At g s 1, the
potential turns into a short-range Yukawa poten-
tial. Figures 1 and 2 demonstrate that the behavior

Ž .of the function E g crucially depends on the
existence of a bound state at g s 1, i.e., whether or
not d - d Y, where d Y is the critical screeningc c

w x Žparameter for Yukawa potential 23 it is approxi-
mately 1.1906 for the ground state and 0.2202 for

. Y2 p state . If d - d , then the energy crosses thec
border of the continuum spectrum at g ) 1 with a

FIGURE 1. Ground-state energy, in atomic units, of the
( )screened Coulomb potential, Eq. 1 , as a function of

( )g = N y 1 rZ for several values of d . Dashed lines are
the imaginary parts of the energy. The limit of d ª ` is
also shown.

FIGURE 2. Same as in Figure 1 but for the excited 2p
state.
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FIGURE 3. Shape of the effective potential for l = 1, d = 0.25, and g = 0.97. E is energy of the bound state localized
around the shallow minimum at r ; 60. E is the real part of energy of the quasistationary state associated with the1
deep minimum at relatively small r .

positive derivative, otherwise it tends to the
Ž .2 2Coulomb energy y 1 y g r2n and touches the

border of the continuum spectrum at g ª 1. In the
latter case, the wave function becomes more and
more diffuse as g ª 1, and at the limit g s 1 it is
no longer a square-integrable wave function. We
found that the results of summation of the pertur-
bation series diverge in this region for S states
Ž .l s 0 . However, for l / 0 states, quadratic Padé
approximant converge when g R 0.9, but to com-
plex values. In Figure 3, the effective potential

1 2Ž .including the centrifugal term y r has a sec-2

ond minimum at a relatively small r that gives
rise to a quasistationary state. Note that for the
bound state there is another shallow minimum
which is far from the origin. When g G 1, the
quasistationary state continues to exist while the
diffuse bound state merges to the continuum spec-
trum.

Figure 4 shows the first derivative of the
ground-state energy as a function of g for several
values of d . It demonstrates that the first deriva-
tive at the threshold is nonzero for d - d Y andc
zero for d ) d Y.c

The critical parameter g s g , where the energyc
level enters the continuum spectrum, is of a partic-
ular interest. For small d , it can be represented in
the following expansion:

`
y1 iŽ . Ž .g d s d g d . 5Ýc i

is1

The coefficients g are found from the conditioni
Ž .E s 0, where E is represented by the series 3 . By

FIGURE 4. First derivative of the ground-state energy
as a function of g for the screened Coulomb potential,

( )Eq. 1 . Dashed lines are represent the imaginary parts
( )the derivative for quasistationary states .

elementary algebraic manipulations, we found that

1 1 3 1
2 Ž .g s , g s n y l l q 1 , . . .0 12 2 4 42n 2n

Ž .6
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Ž .The series 6 is summed by quadratic Pade ap-´
Ž .proximant. We found that the function g d ex-c

hibits the critical behavior at g s 1 similar to the
Ž .behavior of the energy E d at E s 0 for Yukawa

Ž .potential as shown in Figure 5. If l s 0, then g dc
approaches g s 1 at d s d Y with zero derivativec
and a virtual state appears when d ) d Y. If l / 0,c

Ž .then g d crosses the line g s 1 with nonzeroc
derivative, and a resonance state appears when

Y Ž .d ) d . The behavior of 1 y g as a function of dc c
Ž .is shown in Figure 5. Note that 1 y g is anc

eigenvalue of the generalized Schrodinger equa-¨
tion:

2 Ž . yd r1 d l l q 1 e
Ž .y q y P r2 2ž /2 rdr 2 r

1 y eyd r

Ž . Ž . Ž .s 1 y g P r . 7c r

Ž .Equation 7 has the same form of the Schrodinger¨
equation for Yukawa potential,

2 Ž . yd r1 d l l q 1 e
YŽ . Ž .y q y P r s E P r ,2 2ž /2 rdr 2 r

Ž .8

wwith an additional weight operator 1 y
Ž .xexp yd r rr. Moreover, we found that the eigen-

Ž .values of Eq. 7 are similar to the eigenenergies of
Yukawa potential; compare upper and lower pan-
els of Figure 5.

Mapping of the N-Electron Atom to the
One-Particle Model

Analysis of electron]electron correlations in
atomic negative ions shows that one of the elec-
trons is held much farther from the nucleus than

w xthe others 25 . It suggests a one-particle model of
this electron regarded as a weakly bound electron
in a short-range attractive potential. Even a simple
zero-range model potential gives very good de-
scription of the photoabsorption processes in Hy

w x25 .
The present study is not restricted to negative

Ž .ions only. Our model potential 1 approximates
Žboth short-range potential of a negative ion Z s

.N y 1 and the partially screened long-range
Ž .Coulomb potential Z / N y 1 . The free parame-

ter d is chosen to make the binding energy yE in
Ž .the potential, Eq. 1 , be equal to the ionization

( )FIGURE 5. Critical parameter g , Eq. 7 , and thec
( )energy levels in the Yukawa potential, Eq. 8 , as a

function of the screening parameter d for several states.
Dashed lines represent the imaginary parts

Ž .energy of an atom or an ion which is known from
w x w xtheory 26, 27 or experiments 28, 29 . Results of

fitting the parameter d for elements with N F 10
are shown in Figure 6. It is clear that d depends on

Ž .g almost linearly. Behavior of the function d g
near g s 1 that corresponds to Z s N y 1 can be
approximated by

Ž . Ž .d g y g y d g y g0 1 1 0 Ž .d s , 9
g y g0 1

Ž .where g , d are parameters corresponding to the0 0
Ž .neutral atom and g , d are parameters corre-1 1

Žsponding to the isoelectronic negative ion if the
negative ion does not exist, we use parameters

.corresponding to the positive ion . Ionization en-
ergy E is calculated by solving the Schrodinger¨I

Ž . Ž .equation with the potential 1 at g s N y 1 l
Ž .and d determined by Eq. 9 . In essence, our

method consists of extrapolation of the binding
Ž .energy from two data points g s g s N y 1 rN0

Ž .neutral atom and g s g s 1 to the region of1
g ; 1.
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FIGURE 6. Parameter d of the one-particle model as a
function of g for different isoelectronic series. Here N is
the number of electrons.

Let us consider the ground state and the excited
state 1s 2 s 3S of helium isoelectronic ions. For the
ground state, the dependence of the ionization
energy on g is typical for multielectron atoms

w xhaving stable negative ions 8 . We reproduce the
ionization energy curve, as shown in Figure 7,
using only the energies of He and Hy as described
above within an accuracy of 5 = 10y4 . Since 1s 2 s
3S state is unstable for Z s 1, we used ionization

q Ž y.energies of Li instead of H and He to perform
the extrapolation. An accuracy of extrapolation for
1s 2 s 3S state is better than 10y5. It is evident that
direct extrapolation of the binding energy by a
linear fit is inaccurate because of strong nonlinear-
ity in the vicinity of the critical point, as shown in
Figure 7. In addition, the energy has a singularity
at the critical point which deteriorates further the
accuracy of linear extrapolation. Our method takes
advantage of the fact that an atomic core depends
more weakly on l in the vicinity of l than anc
orbit of the outer electron that is about to dissoci-
ate. Numerical results show that the reciprocal of
the core radius can be extrapolated fairly well by a

Ž .linear function, Eq. 9 .

(FIGURE 7. Binding energy found by summation of the
)1rZ expansion for the ground state and the excited

state 1s 2s 3S of the two-electron isoelectronic series.
Dashed curves represent the errors in our extrapolations,
DE, relative to the exact calculations, solid line.

The critical charges are found from the follow-
ing condition:

Ž . Ž .E l s 0, Z s 1rl , 10I c c c

where E is the extrapolated ionization energy.I
ŽResults are given in Table I. They agree mostly

.within an accuracy of 0.01 with both the ab initio
multireference configuration interaction calcu-

w xlations of Hogreve 8 and the critical charges
extracted by us from Davidson’s figures of isoelec-

w xtronic energies 27 . In Table I, the quantum num-
bers of the outer-shell electron and parameters d0
and d are listed for neutral atoms and isoelec-1
tronic negative ions. Note that if a negative ion

w xdoes not exist, then Z s N y 1 8 .c
Our computations of critical charges were ex-

tended to elements with N ) 18 with stable nega-
tive ions. Here we used experimental ionization

w xenergies from atomic data tables 29 . For many
atoms with N ) 18, the ionization energy is not a
continuous function of Z because the ground-state
electronic configurations of N-electron atom and
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TABLE I
Critical charges for atoms with N F 18.

a b( )N atom nl d d Z Z Z0 1 c c c

( )2 He 1s 1.066 0.881 0.912 0.91 0.92
( )4 Be 2s 0.339 0.258 2.864 2.85 2.86
( )6 C 2p 0.255 0.218 4.961 4.95
( )7 N 2p 0.242 0.213 5.862 5.85 5.85
( )9 F 2p 0.239 0.215 7.876 7.87 7.87

( )10 Ne 2p 0.232 0.211 8.752 8.74 8.74
( )12 Mg 3s 0.162 0.130 10.880 10.86
( )14 Si 3p 0.128 0.112 12.925 12.93 12.90
( )15 P 3p 0.123 0.110 13.796 13.78 13.79
( )16 S 3p 0.124 0.111 14.900 14.89 14.90
( )17 Cl 3p 0.120 0.109 15.758 15.74 15.75
( )18 Ar 3p 0.117 0.108 16.629 16.60 16.61

a [ ]Critical charges from ab initio, multireference configuration interaction, computations of Hogreve 8 .
b [ ]Critical charges from Davidson’s figures of isoelectronic energies 27 .

N y 1-electron positive ion may be different from
that of N-electron negative ion and N y 1-electron
atom. For example, ionization of a neutral atom of

Ž .scandium N s 21 consists of transition from the
2 2 Ž . 3 Ž q.term 3d 4 s D Sc to 3d 4 s D Sc , while3r2 1

ionization of an isoelectronic negative ion consists
2 2 Ž y. 2 1of transition from 4 s 4 p P Ca to 4 s S1r2 0

Ž .Ca . We assumed here that the critical charge
configurations are the same as that for the negative
ion. To make the ionization energy a continuous
function of Z, we fixed configurations to that of

Žthe negative ion and N y 1-electron atom ionized
.state . For example, for a neutral atom of scandium

Ž .N s 21 we considered a difference between ener-
2 2 Ž . 2 1 Ž q.gies of terms 4 s 4 p P Sc and 4 s S Sc as1r2 0

a ‘‘modified’’ ionization energy which is a continu-
ous function of the charge to be extrapolated to the
region of g ) 1. Results for the critical charges are
given in Table II.

Our goal here is to perform a systematic check
of the stability of atomic dianions. In order to have
a stable doubly negatively charged atomic ion one

Ž . Ž .should require the surcharge, S N ' N y Z Ne c
G 2. Figure 8 shows the strong correlation be-

Ž .tween the surcharge, S N , and the experimentale
Ž .electron affinity, EA N y 1 . We have found that

the surcharge never exceeds 2. The maximal sur-
Ž .charge, S 86 s 1.48, is found for the closed-shelle

configuration of element Rn and can be related to
the peak of electron affinity of the element N s 85.
Experimental results for negative ions of lan-

w xthanides remain unreliable 30, 31 . We did not
calculate critical charges for lanthanides. Since the

electron affinities of lanthanides are relatively small
w xF 0.5 eV 28 , we expect that the surcharges will

be small.

Dependence of the Critical Charges on
a Magnetic Field

Within the one-particle model, the interaction
with the magnetic field directed along the z-axis is
described by the following diamagnetic term:

B2r 2
2 2 2Ž . Ž .V r s ; r s x q y , 11I 48Z

where the magnetic field strength B is given in
Ž 9 .atomic units 1 a.u s 2.3505 10 G . By solving the

Schrodinger equation at zero energy, with the¨
Ž .model potential Eq. 1 plus the interaction term,

Ž .Eq. 11 , we found the critical parameter g as ac
function of the scaled magnetic field BX s BrZ 2

c
for a given N-electron atom. By varying BX, we

Ž .determined the dependence of Z s N y 1 rgc c
on B s BXZ 2 parametrically.c

ŽThe parameter d was set to d of a free atom atc
.zero field . We found that the increase of the

magnetic field generally leads to decrease of the
critical charge. Although weakening interaction
with the atomic nucleus makes the atomic core
less compact and decreases the parameter d , the
increase of the diamagnetic interaction produces
an opposite effect and tightens the atomic core. We
assumed here, that both effects almost compensate
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one another making d s const as a good approxi-
mation.

Near the critical charge, the weak magnetic field
interacts mostly with the loosely bound electron
and does not change the atomic core. However, a

TABLE II
Critical charges for atoms with N ) 18.

( )N atom nl d d Z0 1 c

20 Ca 4s 0.0897 0.0748 18.867
21 Sc 4p 0.0776 0.0678 19.989
22 Ti 4p 0.0764 0.0675 20.958
23 V 3d 0.0970 0.0913 21.992
24 Cr 3d 0.0966 0.0912 22.946
25 Mn 4s 0.0871 0.0751 23.863
27 Co 3d 0.0962 0.0913 25.985
28 Ni 3d 0.0959 0.0912 26.941
29 Cu 3d 0.0956 0.0911 27.900
30 Zn 4s 0.0839 0.0748 28.817
32 Ge 4p 0.0745 0.0676 30.946
33 As 4p 0.0727 0.0670 31.814
34 Se 4p 0.0728 0.0673 32.887
35 Br 4p 0.0715 0.0667 33.747
36 Kr 4p 0.0704 0.0661 34.614
38 Sr 5s 0.0573 0.0489 36.830
39 Y 5p 0.0505 0.0451 37.986
40 Zr 5p 0.0487 0.0450 38.942
41 Nb 4d 0.0614 0.0580 39.912
42 Mo 5s 0.0544 0.0485 40.802
43 Tc 5s 0.0544 0.0488 41.849
44 Ru 4d 0.0607 0.0580 42.937
45 Rh 5s 0.0537 0.0485 43.801
46 Pd 5s 0.0533 0.0485 44.797
47 Ag 5s 0.0545 0.0491 45.897
48 Cd 5s 0.0528 0.0484 46.789
50 Sn 5p 0.0486 0.0450 48.945
51 Sb 5p 0.0479 0.0447 49.807
52 Te 5p 0.0478 0.0447 50.833
53 I 5p 0.0472 0.0445 51.715
54 Xe 5p 0.0466 0.0442 52.590
57 La 6p 0.0349 0.0321 55.954
58 Ce 5d 0.0419 0.0400 56.905
60 Nd 5d 0.0423 0.0400 58.948
70 Yb 6p 0.0353 0.0322 68.985
74 W 5d 0.0415 0.0400 72.955
75 Re 5d 0.0415 0.0400 73.884
78 Pt 5d 0.0412 0.0399 76.822
79 Au 6s 0.0360 0.0338 77.656
80 Hg 6s 0.0359 0.0338 78.650
82 Pb 6p 0.0340 0.0321 80.946
83 Tl 6p 0.0341 0.0321 81.929
84 Po 6p 0.0338 0.0320 82.837
86 Rn 6p 0.0333 0.0317 84.518
89 Ac 7p 0.0256 0.0240 87.958

FIGURE 8. Calculated surcharge, S = N y Z , as ae c
function of the number of electrons, N.

strong magnetic field can significantly change the
shape and the radius of the atomic core. This
means the simple one-particle model is no longer
valid.

Accuracy of our model was tested for the he-
lium isoelectronic series. Critical charges were
found independently by direct variational calcula-

Ž .tions details will be published elsewhere . Results
of comparison with the one-particle model are
shown in Figure 9. For weak fields, B - 0.2, there
is a good agreement between the one-particle
model and the more accurate variational calcula-
tions. For strong fields, our model significantly
underestimates the critical charge because it does
not take into account squeezing of the atomic core.

Results for the critical magnetic field B , thec
minimum field necessary to obtain the surcharge
S s 2, for selected atoms are listed in Table III.e
For atoms with an external p electron, we consid-
ered both m s 0 and m s "1 states. We found
that m s 0 states are less stable in the presence of
a magnetic field. However, we have found that
dianions with closed-shell configurations such as
Oy2 , Sy2 , Sey2 , Tey2 , and Poy2 became stable at
magnetic fields of about 1]2 a.u. But dianions with
an external s electron such as Ney2 , Ary2 , and
Kry2 do not exist at any magnetic field strength,
B. This can be attributed to the fact that because of
the different symmetry between s and p orbitals,

² 2:the average r for the p electron will be smaller
than that for the s electron, and as a result the shift
in the ionization energy will be larger in the pres-
ence of a magnetic field for an atom with a weakly
bound p electron. Although it is not feasible to
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FIGURE 9. Critical charge for the helium isoelectronic series as a function of the magnetic field strength, B, in atomic
units. Solid line represents the exact variational calculations and the dashed line from our one-particle model.

obtain such dianions in the laboratory, because of
the strong magnetic field, they might be of consid-
erable interest to models of magnetic white dwarf
stellar atmospheres.

Conclusions

Calculation of the critical charges for N-electron
atoms is of fundamental importance in atomic
physics since this will determine the minimum

TABLE III
Critical magnetic fields, in atomic units, for
N-electron dianions.

Dianion N Bc

2 yHe 4 No
2yBe 6 1.89

2yB 7 1.63
2yN 9 1.98
2yO 10 1.70

2yNe 12 No
2yMg 14 3.36

2yAl 15 1.90
2ySi 16 2.65

2yP 17 1.71
2yS 18 1.26

2ySe 36 1.32
2yTe 54 1.21
2yPt 80 No
2yPo 86 1.06

w xcharge to bind N electrons. Already Kato 32 and
w xHunziker 33 show that an atom or ion has in-

finitely many discrete Rydberg states if Z ) N y 1,
w xand the results of Zhislin and co-workers 34

show that a negative ion has only finitely many
discrete states if Z F N y 1. Baker and co-workers
w x2 concluded, with the fact that experiment has
yet to find a stable doubly negative atomic ion, the
critical charge obeys the following inequality:

Ž .N y 2 F Z F N y 1. 12c

Our numerical results confirmed this inequality
and show that at most, only one electron can be
added to a free atom in the gas phase. The second
extra electron is not bound by singly charged neg-
ative ion because of the repulsive potential sur-
rounding the isolated negative ion. This conclusion
can be explained by examining the asymptotic
form of the unscaled potential

Ž .Z y N q 1
Ž . Ž .V r s y . 13

r

For the doubly charged negative ions, N s Z q 2,
and this potential becomes repulsive.

Our one-particle model Hamiltonian, is simple
to solve, captures the main physics of the loose
electron near the critical charge, reproduces the
correct asymptotic behavior of the potential, gives
very accurate numerical results for the critical
charges in comparison with accurate ab initio cal-
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culations for atoms with 2 F N F 18, and is in full
agreement with the prediction of the statistical
theory of Thomas]Fermi]Von Weizsacker model
of large atoms. In this theory it was proved that
N , the maximum number of electrons that can bec
bound to an atom of nuclear charge Z, cannot

w xexceed Z by more than one 35 .
Recently, there has been an ongoing experimen-

tal and theoretical search for doubly charged nega-
w xtive molecular dianions 36 . In contrast to atoms,

large molecular systems can hold many extra elec-
trons because the extra electrons can stay well

w xseparated 37 . However, such systems are chal-
lenging from both theoretical and experimental

w xpoints of view. Although several authors 38]41
have studied the problem of the stability of di-
atomic systems as a function of the two nuclear
charges, Z and Z , there was no proof of the1 2
existence or absence of diatomic molecular dian-
ions. Our approach might be useful in predicting
the general stability of molecular dianions.
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