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Abstract

One-particle model with a spherically-symmetric screened Coulomb po-

tential is proposed to describe the motion of a loosely bound electron in a

multi-electron atom when the nuclear charge, which is treated as a contin-

uous parameter, approaches its critical value. The critical nuclear charge,

Zc, is the minimum charge necessary to bind N electrons. Parameters of the

model are chosen to meet known binding energies of the neutral atom and

the isoelectronic negative ion. This model correctly describes the asymptotic

behavior of the binding energy in the vicinity of the critical charge, gives

accurate estimation of the critical charges in comparison with ab initio cal-

culations for small atoms and is in full agreement with the prediction of the

statistical theory of large atoms. Our results rule out the stability of doubly

charged atomic negative ions in the gas phase. Moreover, the critical charge

obeys the proposed inequality, N � 2 � Zc � N � 1. We show that in the

presence of a strong magnetic �eld many atomic dianions become stable.
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I. INTRODUCTION

The question of stability of a given quantum system of charged particles is of fundamental

importance in atomic, molecular, and nuclear physics. When the charge of one of the

particles varies, the system might go from stable to metastable or to unstable con�gurations.

Consider, for example, the ground state energy of the two-electron atom as a function of the

nuclear charge Z. Positive integer nuclear charges correspond to stable systems such as H�

(Z = 1), He (Z = 2), Li+ (Z = 3) etc. However, when the charge is less than the critical

charge Zc = 0:911, the minimum charge necessary to bind two electrons, the ground state

cease to exist and becomes absorbed by the continuum [1,2].

The calculation of the critical nuclear charge, Zc, for two-electron atoms has a long

history [1,3,4] with controversial results of whether or not the value of Zc is the same as the

radius of convergence, Z�, of the perturbation series in 1=Z. Morgan et al. have performed a

401-order perturbation calculation to resolve this controversy and found that Z� is equal to

Zc which is approximately 0:911 [2]. For N-electron atom, Lieb [5] proved that the number

of electrons, Nc, that can be bound to an atom of nuclear charge, Z, satis�es Nc < 2Z + 1.

With this rigorous mathematical result, only the instability of the dianion H2� has been

demonstrated [5]. For larger atoms, Z > 1, the corresponding bound on Nc is not sharp

enough to be useful in ruling out the existence of other dianions. However Herrick and

Stillinger estimated the critical charge for neon isoelectronic sequence, Zc ' 8:77. Cole and

Perdew [6] also con�rmed this result for N = 10 by density functional calculations and ruled

out the stability of O2�. In a previous publication, we used Davidson's tables of energies as

a function of Z to estimate the critical charges of atoms up to N = 18 [7]. However, Hogreve

used large and di�use basis sets and multireference con�guration interaction to calculate the

critical charges for all atoms up to N = 19 [8].

Recently, with Serra [9,10] we have found that one can describe stability of atomic ions

and symmetry breaking of electronic structure con�gurations as quantum phase transitions

and critical phenomena. This analogy was revealed [9] by using the large dimensional limit
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model of electronic structure con�gurations [11]. Quantum phase transitions can take place

as some parameter in the Hamiltonian of the system is varied. For the Hamiltonian of

N -electron atoms, this parameter is taken to be the nuclear charge. As the nuclear charge

reaches a critical point, the quantum ground state changes its character from being bound to

being degenerate or absorbed by a continuum. For two and three-electron atoms, we have

used the �nite-size scaling method to obtain the critical nuclear charges. The �nite size

scaling method was formulated in statistical mechanics to extrapolate information obtained

from a �nite system to the thermodynamic limit [14,15]. In quantum mechanics, the �nite

size corresponds to the number of elements in a complete basis set used to expand the

exact wave function of a given Hamiltonian [12,13]. For the two-electron atoms with the

con�guration 1s2, the critical charge was found to be Zc ' 0:911. The fact that this critical

charge is below Z = 1 explains why H� is a stable negative ion [16]. For the three-electron

atoms the critical nuclear charge for the ground state was found to be Zc ' 2, which explains

why the He� and H�2 are unstable negative ions [17].

Here we use a simple one-particle model to estimate the nuclear critical charge for any

N -electron atom. This model has one free parameter which was �tted to meet the known

binding energy of the neutral atom and its isoelectronic negative ion. The critical charges

are found for atoms up to Rn (N = 86). For N � 18, our results are in good agreement with

the con�guration interaction computations of Hogreve [8]. In sec. II we introduce the one-

particle model and the methods to solve for the energies as a function of the nuclear charge.

Sec. III, gives the mapping of the multi-electron atom to the one-particle model. The e�ect

of the magnetic �eld on the stability of atoms is given in Sec. IV. Finally, we discuss the

stability of doubly charged atomic ions and ways to extend this model to molecular systems.

II. ONE-PARTICLE MODEL

Superposition of the Coulomb and Yukawa potentials known as Hellmann potential [18]

is widely used to represent interactions in atomic, molecular, and solid state physics [19,20].
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Here, the model potential with two parameters 
 and Æ,

V (r) = �
1

r
+



r

�
1� e�Ær

�
(1)

is used to approximate the interaction between a loosely bound electron and the atomic core

in a multi-electron atom.

Let us consider an N -electron atom with a nuclear charge Z. In atomic units, the

potential of interaction between the loose electron and an atomic core consisting of the

nucleus and the other N � 1 electrons tends to �Z=r at small r and to (�Z +N � 1)=r at

large r. After the scaling transformation r ! Zr, the potential of interaction between two

electrons is �=rij with � = 1=Z, and the potential of interaction between an electron and the

nucleus is �1=ri. In these scaled units the potential of interaction between a valence electron

and a core tends to�1=r at small r and tends to (�1+
)=r with 
 = (N�1)� at large r. It is

easy to see that the model (1) correctly reproduces such an e�ective potential both at small

r and at large r. The transition region between �1=r-behavior and (�1+
)=r-behavior has

the size of the core that is about 1=Æ.

Eigenvalues of the potential (1) were found by two independent methods. The �rst

method is a numerical method: Solving the Sturm - Liouville eigenvalue problem by inte-

gration of the di�erential equation. The energies can be easily calculated for any quantum

numbers n, l and any parameter 
, Æ as long as the state is bound. The second method is

a perturbation method in the small parameter, Æ. The potential Eq. (1) is expanded in a

power series of the form

V (r) = �
1

r
+ 
Æ �

1

2

rÆ2 +

1

6

r2Æ3 �

1

24

r3Æ4 + ::: (2)

where the zero-order term is the Coulomb potential. The zero-order energy is given by

the Rydberg formula E0 = �1=2n2. To calculate the higher-order corrections, we used the

Rayleigh - Schr�odinger perturbation theory for the screened Coulomb potential. The result

can be represented as a power series in Æ

E = �
1

2n2
+

1X
i=1

EiÆ
i (3)
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where the coeÆcients Ei are calculated [21] up to high orders i � 100.

E1 = 
; E2 =

�
�
3

4
n2 +

1

4
l(l + 1)

�

; E3 = n2

�
n2 �

1

2
l(l + 1)�

1

2

�

; ::: (4)

The series in Eq. (3) can be summed by using quadratic Pad�e approximants that consider-

ably accelerate the convergence and allow us to �nd complex energies of resonances when

the perturbation parameter is suÆciently large [22]. For bound states, the results of Pad�e

summation are the same as the one found by the numerical integration method.

Results for the ground and excited 2p states as a function of 
 for several values of Æ are

shown in Figs. (1) and (2) respectively. At 
 = 1, the potential turns into a short-range

Yukawa potential. Figs.(1) and (2) demonstrate that the behavior of the function E(
)

crucially depends on the existence of a bound state at 
 = 1 , i.e. weather or not Æ < ÆY
c
,

where ÆY
c
is the critical screening parameter for Yukawa potential [23] (it is approximately

1.1906 for the ground state and 0.2202 for 2p state). If Æ < ÆY
c
then the energy crosses the

border of the continuum spectrum at 
 > 1 with a positive derivative, otherwise it tends to

the Coulomb energy �(1 � 
)2=2n2 and touches the border of the continuum spectrum at


 ! 1. In the latter case, the wave function becomes more and more di�use as 
 ! 1, and at

the limit 
 = 1 it is no longer a square-integrable wave function. We found that the results

of summation of the perturbation series diverge in this region for S-states (l = 0). However

for l 6= 0 states, quadratic Pad�e approximant converge when 
 >

�

0:9, but to complex values.

In Fig. (3), the e�ective potential (including the centrifugal term �1=2r2) has a second

minimum at a relatively small r that gives rise to a quasistationary state. Note that for the

bound state there is another shallow minimum which is far from the origin. When 
 � 1,

the quasistationary state continues to exist while the di�use bound state merges to the

continuum spectrum.

Fig.(4) shows the �rst derivative of the ground state energy as a function of 
 for several

values of Æ. It demonstrates that the �rst derivative at the threshold is nonzero for Æ < ÆY
c

and zero for Æ > ÆY
c
.

The critical parameter 
 = 
c, where the energy level enters the continuum spectrum, is
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of a particular interest. For small Æ, it can be represented in the following expansion


c(Æ) = Æ�1
1X
i=1


iÆ
i (5)

The coeÆcients 
i are found from the condition E = 0, where E is represented by the series

(3). By elementary algebraic manipulations, we found that


0 =
1

2n2
; 
1 =

1

2n2

�
3

4
n2 �

1

4
l(l + 1)

�
; ::: (6)

The series (6) is summed by quadratic Pad�e approximant. We found that the function 
c(Æ)

exhibits the critical behavior at 
 = 1 similar to the behavior of the energy E(Æ) at E = 0

for Yukawa potential as shown in Fig.(5). If l = 0, then 
c(Æ) approaches 
 = 1 at Æ = ÆY
c

with zero derivative and a virtual state appears when Æ > ÆY
c
. If l 6= 0, then 
c(Æ) crosses

the line 
 = 1 with non-zero derivative and a resonance state appears when Æ > ÆY
c
. The

behavior of (1�
c) as a function of Æ is shown in Fig. (5). Note that (1�
c) is an eigenvalue

of the generalized Schr�odinger equation

 
�
1

2

d2

dr2
+
l(l + 1)

2r2
�

e�Ær

r

!
P (r) = (1� 
c)

1� e�Ær

r
P (r) (7)

Eq. (7) has the same form of the Schr�odinger equation for Yukawa potential,

 
�
1

2

d2

dr2
+
l(l + 1)

2r2
�
e�Ær

r

!
P (r) = EY P (r) (8)

with an additional weight operator [1� exp(�Ær)] =r. Moreover, we found that the eigen-

values of Eq. (7) are similar to the eigenenergies of Yukawa potential, compare upper and

lower panels of Fig.(5).

III. MAPPING OF THE N-ELECTRON ATOM TO THE ONE-PARTICLE

MODEL

Analysis of electron-electron correlations in atomic negative ions shows that one of the

electrons is held much farther from the nucleus than the others [24]. It suggests a one-particle

model of this electron regarded as a weakly bound electron in a short-range attractive
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potential. Even a simple zero-range model potential gives very good description of the

photoabsorption processes in H� [24].

The present study is not restricted to negative ions only. Our model potential (1) approx-

imates both short-range potential of a negative ion (Z = N � 1) and the partially screened

long-range Coulomb potential (Z 6= N � 1). The free parameter Æ is chosen to make the

binding energy �E in the potential, Eq. (1), be equal to the ionization energy of an atom

(or an ion) which is known from theory [25,27] or experiments [26,28]. Results of �tting the

parameter Æ for elements with N � 10 are shown in Fig.(6). It is clear that Æ depends on


 almost linearly. Behavior of the function Æ(
) near 
 = 1 that corresponds to Z = N � 1

can be approximated by

Æ =
Æ0(
 � 
1)� Æ1(
 � 
0)


0 � 
1
(9)

where (
0; Æ0) are parameters corresponding to the neutral atom and (
1; Æ1) are parameters

corresponding to the isoelectronic negative ion (if the negative ion does not exist, we use

parameters corresponding to the positive ion). Ionization energy EI is calculated by solving

the Schr�odinger equation with the potential (1) at 
 = (N � 1)� and Æ determined by Eq.

(9). In essence, our method consists of extrapolation of the binding energy from two data

points 
 = 
0 = (N � 1)=N (neutral atom) and 
 = 
1 = 1 to the region of 
 � 1.

Let us consider the ground state and the excited state 1s 2s 3S of helium isoelectronic

ions. For the ground state, the dependence of the ionization energy on 
 is typical for multi-

electron atoms having stable negative ions [8]. We reproduce the ionization energy curve, as

shown in Fig. (7), using only the energies of He and H� as it was described above within an

accuracy of 5 � 10�4. Since 1s 2s 3S state is unstable for Z = 1, we used ionization energies

of Li+ (instead of H�) and He to perform the extrapolation. An accuracy of extrapolation

for 1s 2s 3S state is better than 10�5. It is evident that direct extrapolation of the binding

energy by a linear �t is inaccurate because of strong non-linearity in the vicinity of the

critical point as shown in Fig. (7). In addition, the energy has a singularity at the critical

point which deteriorates further the accuracy of linear extrapolation. Our method takes
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advantage of the fact that an atomic core depends more weakly on � in the vicinity of �c

than an orbit of the outer electron that is about to dissociate. Numerical results show that

the reciprocal of the core radius can be extrapolated fairly well by a linear function, Eq. (9).

The critical charges are found from the following condition

EI(�c) = 0; Zc = 1=�c (10)

where EI is the extrapolated ionization energy. Results are given in table I. They agree

(mostly within an accuracy of 0.01) with both, the ab initio multireference con�guration in-

teraction calculations of Hogreve [8] and the critical charges extracted by us from Davidson's

�gures of isoelectronic energies [27]. In Table I, the quantum numbers of the outer-shell elec-

tron and parameters Æ0 and Æ1 are listed for neutral atoms and isoelectronic negative ions.

Note that if a negative ion does not exist, then Zc = N � 1 [8].

Our computations of critical charges were extended to elements with N > 18 with stable

negative ions. Here we used experimental ionization energies from atomic data tables [28].

For many atoms with N > 18, the ionization energy is not a continuous function of Z

because the ground-state electronic con�gurations of N -electron atom and N � 1-electron

positive ion may be di�erent from that of N -electron negative ion and N � 1-electron atom.

For example, ionization of a neutral atom of scandium (N = 21) consists of transition from

the term 3d 4s2 2D3=2 (Sc) to 3d 4s 3D1 (Sc
+), while ionization of an isoelectronic negative

ion consists of transition from 4s2 4p 2P1=2 (Ca�) to 4s2 1S0 (Ca). We assumed here that

the critical charge con�gurations are the same as that for the negative ion. To make the

ionization energy a continuous function of Z, we �xed con�gurations to that of the negative

ion and N � 1-electron atom (ionized state). For example, for a neutral atom of scandium

(N = 21) we considered a di�erence between energies of terms 4s2 4p 2P1=2 (Sc) and 4s2 1S0

(Sc+) as a "modi�ed" ionization energy which is a continuous function of the charge to be

extrapolated to the region of 
 > 1. Results for the critical charges are given in table II.

Our goal here is to perform a systematic check of the stability of atomic dianions. In

order to have a stable doubly negatively charged atomic ion one should require the surcharge,
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Se(N) � N � Zc(N) � 2. Figure (8) shows the strong correlation between the surcharge,

Se(N) and the experimental electron aÆnity, EA(N�1). We have found that the surcharge

never exceeds two. The maximal surcharge, Se(86) = 1:48, is found for the closed-shell

con�guration of element Rn and can be related to the peak of electron aÆnity of the element

N = 85. Experimental results for negative ions of lanthanides remain unreliable [29,30]. We

did not calculate critical charges for lanthanides. Since the electron aÆnities of lanthanides

are relatively small � 0:5 eV [26], we expect that the surcharges will be small.

IV. DEPENDENCE OF THE CRITICAL CHARGES ON A MAGNETIC FIELD

Within the one-particle model, the interaction with the magnetic �eld directed along the

z-axis is described by the following diamagnetic term

VI(r) =
B2�2

8Z4
; �2 = x2 + y2 (11)

where the magnetic �eld strength B is given in atomic units (1 a.u =2.3505 109 G). By

solving the Schr�odinger equation at zero energy, with the model potential Eq. (1) plus the

interaction term, Eq. (11), we found the critical parameter 
c as a function of the scaled

magnetic �eld B0 = B=Z2

c
for a given N-electron atom. By varying B0, we determined the

dependence of Zc = (N � 1)=
c on B = B0Z2

c
parametrically.

The parameter Æ was set to Æc of a free atom (at zero �eld). We found that the increase

of the magnetic �eld generally leads to decrease of the critical charge. Although weakening

interaction with the atomic nucleus makes the atomic core less compact and decreases the

parameter Æ, the increase of the diamagnetic interaction produces an opposite e�ect and

tightens the atomic core. We assumed here, that both e�ects almost compensate one another

making Æ = const as a good approximation.

Near the critical charge, the weak magnetic �eld interacts mostly with the loosely bound

electron and does not change the atomic core. However, strong magnetic �eld can signi�-

cantly change the shape and the radius of the atomic core, this means the simple one-particle

model is no longer valid.
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Accuracy of our model was tested for the helium isoelectronic series. Critical charges were

found independently by direct variational calculations (details will be published elsewhere).

Results of comparison with the one-particle model are shown on Fig.(9). For weak �elds

B < 0:2, there is a good agreement between the one-particle model and the more accurate

variational calculations. For strong �elds, our model signi�cantly underestimates the critical

charge because it does not take into account squeezing of the atomic core.

Results for the critical magnetic �eld Bc, the minimum �eld necessary to obtain the

surcharge Se = 2, for selected atoms are listed in Table III. For atoms with an external

p-electron, we considered both m = 0 and m = �1 states. We found that m = 0 states

are less stable in the presence of a magnetic �eld. However, we have found that dianions

with closed shell con�gurations such as O�2, S�2, Se�2, Te�2, and Po�2 became stable at

magnetic �elds of about 1 to 2 a.u. But dianions with an external s-electron such as Ne�2,

Ar�2 and Kr�2 do not exist at any magnetic �eld strength, B. This can be attributed to the

fact that because of the di�erent symmetry between s and p orbitals, the average < �2 > for

p-electron will be smaller than that for s-electron and as a result the shift in the ionization

energy will be larger in the presence of a magnetic �eld for an atom with a weakly bound

p-electron. Although it is not feasible to obtain such dianions in the laboratory, because

of the strong magnetic �eld, they might be of considerable interest to models of magnetic

white dwarf stellar atmospheres.

V. CONCLUSIONS

Calculation of the critical charges for N-electron atoms is of fundamental importance in

atomic physics since this will determine the minimum charge to bind N electrons. Already

Kato [31] and Hunziker [32] show that an atom or ion has in�nitely many discrete Rydberg

states if Z > N � 1, and the results of Zhislin and co-workers [33] show that a negative ion

has only �nitely many discrete states if Z � N � 1. Morgan and co-workers [2] concluded,

with the fact that experiment has yet to �nd a stable doubly negative atomic ion, the critical
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charge obeys the following inequality

N � 2 � Zc � N � 1 (12)

Our numerical results con�rmed this inequality and show that at most, only one electron

can be added to a free atom in the gas phase. The second extra electron is not bound

by singly charged negative ion because of the repulsive potential surrounding the isolated

negative ion. This conclusion can be explained by examining the asymptotic form of the

unscaled potential

V (r) = �
(Z �N + 1)

r
: (13)

For the doubly charged negative ions, N = Z + 2, and this potential becomes repulsive.

Our one-particle model Hamiltonian, is simple to solve, captures the main physics of the

loose electron near the critical charge, reproduces the correct asymptotic behavior of the

potential, gives very accurate numerical results for the critical charges in comparison with

accurate ab initio calculations for atoms with 2 � N � 18 and is in full agreement with the

prediction of the statistical theory of Thomas-Fermi-Von Weizsacker model of large atoms.

In this theory it was proved that Nc, the maximum number of electrons that can be bound

to an atom of nuclear charge Z, cannot exceed Z by more than one [34].

Recently, there has been an ongoing experimental and theoretical search for doubly

charged negative molecular dianions [35]. In contrast to atoms, large molecular systems

can hold many extra electrons because the extra electrons can stay well separated [36].

However, such systems are challenging from both theoretical and experimental points of

view. Although several authors [37{40] have studied the problem of the stability of diatomic

systems as a function of the two nuclear charges, Z1 and Z2, there was no proof of the

existence or absence of diatomic molecular dianions. Our approach might be useful in

predicting the general stability of molecular dianions.
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TABLES

TABLE I. Critical charges for atoms with N � 18

N(atom) nl Æ0 Æ1 Zc Z�c Z��c

2 (He) 1s 1.066 0.881 0.912 0.91 0.92

4 (Be) 2s 0.339 0.258 2.864 2.85 2.86

6 (C) 2p 0.255 0.218 4.961 4.95

7 (N) 2p 0.242 0.213 5.862 5.85 5.85

9 (F) 2p 0.239 0.215 7.876 7.87 7.87

10 (Ne) 2p 0.232 0.211 8.752 8.74 8.74

12 (Mg) 3s 0.162 0.130 10.880 10.86

14(Si) 3p 0.128 0.112 12.925 12.93 12.90

15 (P) 3p 0.123 0.110 13.796 13.78 13.79

16 (S) 3p 0.124 0.111 14.900 14.89 14.90

17 (Cl) 3p 0.120 0.109 15.758 15.74 15.75

18 (Ar) 3p 0.117 0.108 16.629 16.60 16.61

� Critical charges from ab initio, multireference con�guration interaction, computations

of Hogreve [8].

�� Critical charges from Davidson's �gures of isoelectronic energies [27].
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TABLE II. Critical charges for atoms with N > 18

N Atom nl Æ0 Æ1 Zc

20 Ca 4s 0.0897 0.0748 18.867

21 Sc 4p 0.0776 0.0678 19.989

22 Ti 4p 0.0764 0.0675 20.958

23 V 3d 0.0970 0.0913 21.992

24 Cr 3d 0.0966 0.0912 22.946

25 Mn 4s 0.0871 0.0751 23.863

27 Co 3d 0.0962 0.0913 25.985

28 Ni 3d 0.0959 0.0912 26.941

29 Cu 3d 0.0956 0.0911 27.900

30 Zn 4s 0.0839 0.0748 28.817

32 Ge 4p 0.0745 0.0676 30.946

33 As 4p 0.0727 0.0670 31.814

34 Se 4p 0.0728 0.0673 32.887

35 Br 4p 0.0715 0.0667 33.747

36 Kr 4p 0.0704 0.0661 34.614

38 Sr 5s 0.0573 0.0489 36.830

39 Y 5p 0.0505 0.0451 37.986

40 Zr 5p 0.0487 0.0450 38.942

41 Nb 4d 0.0614 0.0580 39.912

42 Mo 5s 0.0544 0.0485 40.802

43 Tc 5s 0.0544 0.0488 41.849

44 Ru 4d 0.0607 0.0580 42.937

45 Rh 5s 0.0537 0.0485 43.801

46 Pd 5s 0.0533 0.0485 44.797

47 Ag 5s 0.0545 0.0491 45.897
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48 Cd 5s 0.0528 0.0484 46.789

50 Sn 5p 0.0486 0.0450 48.945

51 Sb 5p 0.0479 0.0447 49.807

52 Te 5p 0.0478 0.0447 50.833

53 I 5p 0.0472 0.0445 51.715

54 Xe 5p 0.0466 0.0442 52.590

57 La 6p 0.0349 0.0321 55.954

58 Ce 5d 0.0419 0.0400 56.905

60 Nd 5d 0.0423 0.0400 58.948

70 Yb 6p 0.0353 0.0322 68.985

74 W 5d 0.0415 0.0400 72.955

75 Re 5d 0.0415 0.0400 73.884

78 Pt 5d 0.0412 0.0399 76.822

79 Au 6s 0.0360 0.0338 77.656

80 Hg 6s 0.0359 0.0338 78.650

82 Pb 6p 0.0340 0.0321 80.946

83 Tl 6p 0.0341 0.0321 81.929

84 Po 6p 0.0338 0.0320 82.837

86 Rn 6p 0.0333 0.0317 84.518

89 Ac 7p 0.0256 0.0240 87.958
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TABLE III. Critical magnetic �elds, in atomic units, for N-electron dianions

Dianion N Bc Dianion N Bc

He2� 4 No Si2� 16 2.65

Be2� 6 1.89 P2� 17 1.71

B2� 7 1.63 S2� 18 1.26

N2� 9 1.98 Se2� 36 1.32

O2� 10 1.70 Te2� 54 1.21

Ne2� 12 No Pt2� 80 No

Mg2� 14 3.36 Po2� 86 1.06

Al2� 15 1.90
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FIGURES

FIG. 1. Ground-state energy, in atomic units, of the screened Coulomb potential, Eq. (1) as a

function of 
 = (N � 1)=Z for several values of Æ. Dashed lines are the imaginary parts of a the

energy. The limit of Æ !1 is also shown.

FIG. 2. The same as in Fig. (1), but for the excited 2p-state.

FIG. 3. The shape of the e�ective potential for l = 1, Æ = 0:25, and 
 = 0:97. E is energy of

the bound state localized around the shallow minimum at r � 60. E1 is the real part of energy of

the quasistationary state associated with the deep minimum at relatively small r.

FIG. 4. The �rst derivative of the ground-state energy as a function of 
 for the screened

Coulomb potential, Eq. (1). Dashed lines are represent the imaginary parts the derivative (for

quasistationary states).

FIG. 5. The critical parameter 
c, Eq. (7), and the energy levels in the Yukawa potential,

Eq. (8), as a function of the screening parameter Æ for several states. Dashed lines represent the

imaginary parts

FIG. 6. The parameter Æ of the one-particle model as a function of 
 for di�erent isoelectronic

series. Here N is the number of electrons.

FIG. 7. Binding energy (found by summation of the 1=Z-expansion) for the ground state and

the excited state 1s 2s 3S of the two-electron isoelectronic series. Dashed curves represent the

errors in our extrapolations, �E, relative to the exact calculations, solid line.
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FIG. 8. The calculated surcharge, Se = N � Zc, as a function of the number of electrons, N .

FIG. 9. The critical charge for the helium isoelectronic series as a function of the magnetic

�eld strength, B, in atomic units. Solid line represents the exact variational calculations and the

dashed line form our one-particle model.
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