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¥IX 539.1 %-16
THE STARX RFFECT IN INTENSR PIELD. II; Preprint ITEP 87-177/

¥.5.Po V.
1987 _Pg;;‘ D.Mur, A.¥.Sergeev, V.H. Weinberg « M.: ATONINPONN,

The problem of hydrogen atom inm homogeneous electric tield
is considered, The Stark shifte and widths of stomic levels are

computed by summation of divergent perturbation series and by
" t/n-expanaion - up to % yalues comparable with the field on
the electron orbit. The results of the caloulationa are presented
for the following sequences of states : \n1.0 0>' ‘0,n2.0>
‘ 1,n1,0> » a8 well as for all states with n = 2 and 3 {n

iq the principal quantum number). The Stark shifts and widths of
Rydberg states (with n = 15$30) in electric field which exceeds

the clasaical jonization threshold are computed. The results of
our calculations agree with experiment.

FPig. - 12, ref.- 32

' @ FncTaTyT recpeTaweciof x sEzcneapumenvonueod ¢uswcw, 1987
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1. The Stark effect in hydrogen atom was studied by many
suthors, see e. g.[i 2d}anﬂ Zurther referencesn: 1n[ 4’14] but
they comsidered only the region of a relatively small fleld.
Nowadays, owing to a progress in h¢6miC'phfsipa aﬂd'laéer s?ect—
TOSCOPY, it seems to be essential to calculate Stark shifts and
widths for & wide variety of states, imecluding Rydbérg. states
(n >>1) s L

The homogenscus eleectric fielid ?5 —takes off the’“adcidental?
degeneracy of hydrogen atom stetes (at & 0 the level'with
parabollc quantum- nutbers n1,nz,m spllts into n(n+1)/9 sublevels).

At switching in the field, %the discrete spectrum state | By 2,m>
goea over inio & quasistationary state with the complex energy -
B=E - (/2 whick will be denoted by the same guanium numbers.’
Instead of energy B and .field ?% we shall use the"rﬁduced" :

1) . O

variables

E(n&mzm}(%) “-:E,""E.ICH’.: ZHZ(EQ”LF/?D, F'=n!1é ; o

which is especially convenieat for the case of "Rydbérg states
(for simplicity we cell. & and -5”_- 2 rﬁ”&“x’”‘) “the shift
and width too). In this work, which is & dlrect contlnuatlon of
Ay N )

[ ] wne present the results of computation of'- S in

strong fields (up te F ~1) for.dlfferen~ stoteg of & hydrogen
, : B SO
stom, '

2. Caleculation methods. e used two independent calculation

rethods: 1) The summation of Rayleigh—Sch:5dinger perturbation

seriea {P5)

S TR R & LI L L L R e R L E AR IEE LU
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k
£ =T & F
. k=0

(2)
2). i/n-expansion for the energy eigenvalues,
' $et @3 .
© & £
£'~=€+-ﬁ—+"ﬁ'i‘+ (3)

Let us briefly describe these methods.

As follows from FP3 anelyais, the coei‘ﬁcients £ g in eq.
(2) have-the foilowing structure:

L VA 2,
Pk('x N Vel ) y X = aven .. {4). .
XEk(’X,fA 4 ) , k - odd

where k 13 the perturbation theory (PT) order, =M "Nx)/h

g ‘Em/n end P, i» a polynomial of degree (k/?] + Por ing-
tance 6-'101, '

Bo=-t, B=3, By=—f{F 3% -9pten),
B, ;%a(m —2* quQ' v3an),
B,=~ & {5497 +4806 B B402 44406 gk
+r o' =S4 g + (35132 45154 ZZ“QGizw*z)"72+

w62 mt ]

Ly T I T T
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Recently, -owing #d &ewelopment of mew PT techuique, &

.great rumber of *PT goeffickents - EJ: e baen ccmp&teﬂ[? 9] ap -
to k = 160 for the ground state, up to k= "H00 for'the. states:
with n =2 and so on. However, the geries (2) have zero counver-
gence radius -'because b.ighEr order PT series ractorially grow
at k —» oo (the Dyson phenomemfm]}'

8(\:,,.%:7‘)% g kk‘p(e + 8 +’%+‘;..)' R )

-

Inthecaaeof‘bheS‘barkefi‘ect TG-BI'ZJ.. ﬁ:n-rtn.i 2\-‘1
and, ecmg., for statees n{:h n.l n2 .

-h

8 = — 6 -1+ L—d.)

= et

Cord.
To. compute the energy ‘e“:‘igéﬁvalu‘e‘i‘mm S coefﬁéién‘t# one

may use the conventional P‘l‘ ﬁynomials
E (6)—?:: E"“-“W g e

However, since PS diféraje at any é >O , such én attémpt may .
be successful’ oniﬁ' a¥ smail & end even'in ‘this reg'i-'é'“:'x;, ‘because

the coefficients By are real , the p?kynomials (6) deterwine
only the Sterk shift not 'the w:.d.th of “the’ level..

To advance. into_t“he' strong field Tegion, ® »'1, one mst

sun the divergent PS 'séri'es'.m To"'th}.s diid we ha‘vé'usé'd"'the‘:ﬁermi'te-
Padé approxlmants (LII’A), the so‘lutions ‘¥ which gw (F) - aTe’
calculated from the equation = By (Qyiat “+ Rﬂy, =0 = (7)
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Here BH{E)"QN(F)’ and B.N(P_) are polynomiamls of degree N the coe-
fricients of which are unambiguously determined from PS coeffici-
enta through the comdition

PN;QNE“*'RWEZ:(?(FM‘H), F—0, (1)
where E = E(F) is PS (2), The ordinary Pade apyroximsnis [K/N] (®
are & particular case of (7') with By = 0. It is clear that Y (F)
contrary to [H[N:l (F) may have imaginary part {at real F) even
if all coefficients of polynomials Pﬁ" QN and R‘N are real which
is just the case in the Stark effect problem. This fact determines
a considerable sdvantags of HPAEgainst PA in the cage of PS sum-
mation for the Stark effect. Investigation of convergence of the
sequence l} y with § increasing indicates that at § ~ 10312
the values of %H(F) are stabiliged and the preclslon in energy
eveluation not lesa than 1073 is achieved.

3. The other approach is based on the 1/n~expansion irhioh is
nowadays successfully applied in quantum mechanics and field theo-
ry. This method wes applied to Stark effect for states |0,0,n-1>
which sorzespond in the ¢lassical N—oo 1imit to the circular
electron orbit, ia refs. [17’29]. In doing so, the first term E@)
of expansion (3) is completely determined by the stable equilib-
rium point for a& classical particle in the effectiwe potential
including centrifugal energy and succeeding coefficiemts EU‘) .

k 2z iﬁm- calculated by recurrence re';ation.a.. Unlike PS coeffici-
(k) depend them-
selves on the field ¥ and in & rather complicated menner. Never-

ents £, , the 1/n-expansion coefficients £

theless, it is not difficuit to caleoulate them numerically.

I1°H N FTIO ENTAIAR 601U 11U T ) SN ) {00010 O P L | Wi LR TR R i|. I LR
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Referring for details to ref. [201, we present here only an
squation for E‘o) « The Pw-dependence for the Stark-effect

problem is given ss foullows:

RS
(@)
T(L—’CQ'Y:F‘ , .

oo .
T = (F) 15 the root of equation which tends to-zero ai.
F —0. Note that variable. T  has simple geometrical meaning:. .
T =z/r,where z 80d r refer to ihe classical orbit{see Pig.1 1a [20)
It is easy to seé from 84 C‘S) that at - T = 1/3,.0T ‘

Pz, o223 0081, £% £, .= -% Y

a "clash" of two classiocal -solu:;‘:ions- éccum, -one of them-gorres—
ponding to stable and the other to unstable equilibrium points.
At F 7B, the erfective:poteniiﬂ:has no minime .at real veluss
of coordinates ; and ? '+ In other words, the equilibrium
point esgcapes to the comples.plane. Such & ®olution hms no physi~
cal meaning in classicml meghanics.hut dn gquantum, mechanics 1_1:..*;18
just the solution which allows one tc dasceribe.not onky the shift
but the width of the levels s we1ll®l,
®e apply [17’ 20] the 3}/n~expansion "to nodeless states

(ny = ny, = O) ‘shich correspond in the clessical(n 0;}1imi'h to
the circular electron orbits normel to the _direction ¢f the field

£ (tnia approach .can be easily genexralized fo. the case.
D4,By << n). Excluding the vegion of F clgse %0 Py 5 the a@(.n-.- .
erpansion determines the enmergy £ =£'—ig' with.a good accura-
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cy at n2 5 and aftsr sumning up series (3) by Padé-approximants
[#/87] (3/2), sven for the ground state, nwi.

The HPA method has adventages st P <0,3 and smell n . It
is essential that there 1s an overlapping region where both me-
thods agree with eaoh other and at P < 0.1 - with the other cal-
culat:.ons[s 13, 16]

For further detsils about computatloml methoda, their con-
vergence rates and so on we refer t¢ ref. [20

4. Turning to the results of the calculation we describe
firgt the Stark shifts s =2n"ReE "™ and in the next Section
~ the Stark widthe. We will noi reproduce hére the results for
th}e states ]0,0,n-‘i} aince they have been published sarlier {17’
20

Consider twa sets of states, |n-1,0,0> and. lo,z-1,0>
the first of which correspond to thewidest: spd the second - to
the m'ruweét among all sumblevels with given n . . Here the sign
of the Fimrk shift is determined by the first P35 term: it is
positive for In-1,0,0> states and regative for lo,n—1,0>
statea, see Pig,l., Bal as & whole, the P-dependence of En’
igs far emough from linear.

Fote that dus to symmetry relations [10]

ILPUAR (o n,,m) (Nghy ) v
g "= ) y £ CR=¢ T(RY (o)
(0,7n—1,0) :
) the function © & (F) may be considered as an analy-
tic contimutation of emergy of the state |n-1,0,0> to megative

valuea of P.

?ig.1 shows the limiting curves, n = oo , which were

FUUNE L e g e
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obtained ¥ independent ealculation with the WKB methed, see
Sec.6, Thege curres qualitatively agree with the results oi‘ the
calculations for finite but large = 2) « The dashed curve in
Fig.] &e’té’:ﬁne's the -values of classical idhizaticn thre_sho_ld,
see below Sec.T.. ) - _

Analogous computations wete carried’ oﬁfb'foi‘ [nﬁ:‘iﬁo} a"béte'é-
m.th n,=" {n=1)/2 and o = 1,3,5,000 TheIinear S'hark -effect is
absent for these states as: well as for the states’ /0,0 in> and
the energy is .expanded.in integer powers of .'E'2 . The resilts ‘o2
the computationl are shown in Fig.2a end 2h. I% "1 'geen f‘rdmf.the
figures that with n . increasing the values of 5,,1 converge
very fastly to the limiting curve é‘,m determined by the: WKB

method, For instamce the ourves vriﬁh B, = 10 and By = 15 4n

Fig.?.‘a are indistingu:r.shlble within the eccmcy of the .ﬁgure
from one- another and from the limiting curve ny &= o o This
is & much more faat convergence then that of previoualy con=
sidered |0,0,n-1ystates, cf. Pig.2 with Fig.1 of Tef. ["_’_J..

To explain this faot let us turn to ‘eq..' {4). 1f we choose -

& set of states |n,,n ,m) with fixed values of % and M ,

then PS-coefficients £ ‘and’ the energ' "ELF ) may be expanded '
at n—> =9 in powers of 1/n° , ie€e the. first eorrect:.on, to

£ oolF) is of order 1/5% . This is just the case’ for the

| ny,m4,0 where "z-:-‘f'\=0 . At the same time, Tor other

states dt hand

DT TRRRTIEY

- ___.I ._:‘ . '.L ) ) -
®2=0 , Mm=Li—n for 10,0, n-1>

r=d-f" , M=0  for  jn-t, 0,00
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o . _ _
Re=m—dAn o, m=0 for . |0, n-4 0>

1 emerge here frbm the parameters

Thus, the terms of order of n~
®£  =ad Jv\ themselves. _
PS. coefficients for excited states with ne? and 3 have been
obtained eax-lie;'{g"w}. liaking use of these coefficients we summed
the corresponding FS by means of HPA. The results are shown in
Fig.3 (gee alsc Pig.4 in ref. onl)_.
5. 1t i3 convenient to represent the width of atomic levels

ag follows

P Enm ey e“f’%f n S“Jz_m F) }

(11)
o (NN, m
vhere the firsi factor | () corresponds o the quasi-
clagsical equation 3
'i: (g nymy TR 2n
=A " ) (12)

Higfigm. eXPL TF Y

This equation is msymptotically exact in the limit F-»0 and
thas 3, ()= 0,

by .
gm.ﬂz,m(F) :Q‘LF "'cz.F * o, F -0 (iz*)
The consiants An1nzn_“ and C4sCpsans depend on quantum nuwn-

bers, see Appendix A. Thus, for the ground stateie’ 1'0]: A= 4,
¢, = 107/12, ey = 227/16 and sc on.

>

FETITLTFRUEUYR R e ) g N T D ([ g ey 8 L LR L U T LR TR RS e e I e o R T A I T T
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The values of Stark shifts computed by the described above methoﬁs
are given in Figs.4, 5. Er."hese figures refers maml,; té ;t.he. ‘reglon
P '7 F* where the aton. 1omzanon process is ‘no’ more twmeling,
see ’oelow Sec,7. Hote that in th:n.s reg:.cm o:f ¥ the f:r.eld strengfh ‘
depend.ence of 1e;rel is close 1:0 lznear. Dashed curves 1n ":Lg.&
corz'esponds to twa f:.rst terms of 1/n expans:.on, E +8 n .
and demonstrate that convergence of i/n expansa.on is goorl enough
even for small n (anslogous situation -L'akes plsce in 'bhe case of
funnel potential [221). Note that Fig 1 together with Fig.5 deter-
mine real and imsginery parts of energy Jor \n—-'l c 0>and

‘0,n—‘t,0> states. The benefit of the reduced variebles (13
is cleer: owing to them ‘the.values of ’8“ for different levels
have ccmparable magn;itudé and one may eagily reveal regulerities
.‘specific for different sets of gtates. | |

- In the FLPR rega.on factonzatwn( ‘H) is comvenient, The guanti-

ties c}

Ty iy

(R) can be easily o‘btaxned ‘from computed wi dths of
levels, see Fz.g.Ga-c and Fig.B of ref. [17‘%‘01- the’ \0 0,n-‘i>

atates).
it P >0 the onrly importsut factor in {11) is T’(F‘)

strongly depending on the i‘ield and changlng many ordors of mag-
rather nerrow for Rydberg ststes- and is c}eterm:.neﬂ _'by the inegqua~-
1ity  <0.1/n or & <0.1n ~5 . In more intense Tields the Tac-
tor & nd becomes very important end F-dependence of (S ‘becones
esséntially monlinear. It should be noted that for all ststes’ 4)
§“ " m(‘r‘-‘) > 0 . therefore ionization probdability of @ level

by intense electric field is much S'ualler than thef value wl:u.ch
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follows from the estimate (12). "
6., Ehe Rydhe:;& limit. An equation for the energy eigenvalues

for highly excited atatéea follows from the quasiclassical Bohr-
Som!n‘er‘fe‘ld' q@hti@tion condition., In genarai caée this ccﬁ.dition
envolves rather cumbersome elliptic integrals. If m = 0 and N-reo
these intégr‘als may be evaluated analyti‘cally_ and quantization

conditions take the form

Pl S =P, |

A B . 46 P F 32
J”"F(? F % —%‘) =68 v, (13)

&**552'::1 '

where Y, =(N+42)h , Mm=mn (A, =4 and

F=F 6002 is the hypergeometric furctiom. Egs.{13)
may be solied numerically. Further simplific'ation_ is possidle if
n; = 0 or o, = O.

’ n,'-rﬂ.-ﬂ.
1) I1f Vs=~0 (5_..e., for 10,n2,0>sta.te:?,—)_’it may be shown

that.JbLEO at any F. Thus, eqs.{13) reduce to one equation

IR I YO -2 _
Ce) = F(F-7:2,16F€™) (123

The epergy £ Temains real mntil z = 16F /g% <1. At z=1 the

hypergecmetric, function has a branc.hing point and the .solufion
of the limiting , "> >° , equation (14) has a singularity

LU TR A R T P e )



) (15)
where F, = zZ° =0 123‘3) 428
* = @AY > 5*—85"*)”-(———%),;-"-1 4ug
ot ¥ y Lnfa g

where’s'={F—'F*)/f:;-vO'an& ¢ = =27 €/ = 3,0 TB. The corresponding
curves (n.*——“' o) obtained by numerical solution of eq.(14) -are
showd in Figs.1,5. ‘
2) similsrly, if V, = 0, then @, (Fy=0 . For
lni,'0,0> states we get the equation o

’ N N e, -2 o
Q-E) = F (%% 123-46FE") 16

The epnergy £ becomes zero at F = B, ¢

= § '\”zz‘gz*dsf‘ﬁ‘\‘;-. , . D

where

T}

o =~ QY/9R) = 0,283 410 ?"_ﬁ = (F-RIIR

I Gl Y Gl ‘
Nall T 0.90%, “z—g—_{“ﬁ@-- ég:):_-—o,ogr}!‘

e A

= [Mam, Teasl=8453%6.. (1)
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Bg. (17) may be ideniically transformed to & more convenient

Torm,
2 474 4 5 .5 .4 &
(¥ +1eFY =FE- %250 (554-4_;??2]) (18)

1t is cliear from (17) and (18) that F=F,  is net a singular
point for £ (F) . Moreower, E(F) remains resl st all F from
0 to o< . Thus, for En.l,0,0) states the level width vanishes
3 in the limit ¥\ -»°° which agreea with numérical calculations,
ses Pig.S5. . ahd 11— 00

3) For arbitrary state 1n.l,n2,0> with 927mingu-
larity of £(F) at P=F, is of the form indicated in {15).

7. The cimsgical ionigation threphol_._d_,: As before P<F, ,

the WKB equation (13) determimes the Teal energy £(F); at ¥ > F,,

£ escape to complex plape. The quantity P, is of a cer,tain impor-~
tance for the process of atom ionization by electric field, espe-
ecially for Rydberh sﬁ\tes. For.statea with nea,-O,F = F, 1a the
vaiue of the field correspoﬁd.ing to barrier vanishing iﬁ the
effective potential ‘UQ_(?) "

The value of F, depends on quantum numbers RqsRas® (ore

precisely, in the limit N —> =<, on the ratios vy and v, ) .
The results of numerical calculations of F, for some staies are
pregented in Pig.7.
As wow previously mentioned, in the region 0 <P <P,
4 tunneling is the origin of ionization of étomic states., At
¥ > 7, regime rather changes: exponential smallness of T dis~

appears and expression (12} camuot repregent P-dependence of

L T T R R AT, TSRt (o, TRt TR L U LA MG L A U R Ut R R N0 R I LR T R B C et L T L Rty U TR T T IR T e
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even in the zero apprcximation, It is interasting to note that

beyond the classical :Lom.zation threshold E > I\‘*, the P-depen-

n
dence of T’m’ ™) is practlcally lrmear, see 1?155.4- 5. The
linear dependence of T'(F) ig valid uwp o F ~5 and then the
e
agymptoiics T‘ ) F2/3 i‘or Fooo comes mto act:.on.

It should also be noted that the oalculated velues of F

conszderably exceed the est:.mate which follows :t‘rom the na'bural

(et firet s;ght) one~dimensional mod.eJ.[BJ .consa.der the 'L'unnel:.ng
of the eleciron along z axls, i.2. along the direct:.e.n of elect-
ric field. The potential V(z)= -3 a‘? ' hes &
marimum gt 20—‘59“2 with Viz, )-—-—2'& . Neglecting the
‘Syark shift, we determine from coxdition V(zy) = -1/20" the moment
of the barr:.er dlsappearsnce, F,; = 1/16 = 0.0625 which is
3-6 times less then the true value F, e Such ] discrepan—-
¢y indicates that F-dependence ot £ Jﬁ,‘_ and’ Jﬁg is very
important {and in the end, the three-dimensional electron motion
during ionization). '

_8. Rydberg states. Invesngatmn of highly exclted (Ryd—
f23-

berg) states attz‘acted much attention in the ls.st few years
28] Recently there were exper:.mentally observed some resonmances
in the photoionization cross section in electric field which

correspond $o.m 15§30 and are narrow enough even at E > 0;

Kolosov has pointe§ outEg}a relationship betwee_n thege resonsnces
and Stark quasistationary states and has obtained fhgii' pézsi'tioils
and widths numerzcally. We have computed the complex energles of
such energies by en mdependent method (sumnat:.on of I’S by quad-—

ratic HPA). The obtaine& results are partly descr;.bed fbelcm.
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knong all 2 states {n1,.n2,m> with fixed n the most
steble are |n-1,0,0) sand their neighbouring with n,>>n, .
It is geen already from the asymptotice of the level width at
F >0, see eq.(12). That is why just these states can exrist
even at positive energy. The rezults of the caleculation are
glven in f‘ig.B for Stark shifts 8,:

level widths. Fig.8 shows also the limiting curve: with R=oo

and in Fig.9 - for the

.evaluated through eq.{7). The F-dependence of%s- nearly linear
at 03 <P <0.8. &t F = 0.4#0.% the real part of the energy
eigenvaluea reverses its sign and a quasistationary level with
positive energy appears.
It is seen from Pigs.5,9 that at fized n and F the least

ionization probability is for ]n—1,0,0> atates fbllowed by

n;—2;0,1>- and thé._n hy ]n—3,0,.2>e.nd. ln—2,1,0> and 8o on.
It should be noted in sddition that the velues of &' and
egpecially di‘ &;' for the last péir of states are very close.
It is not difficult to explain this fact tuking into account the
structure of PS. .indeed,_ consider & set of states with 2n, + m =
= const end n,,m ~ 1 <<n. 411 of them hawe the same % value,

: — SRR
R =4 T (19)

Therefore, according to eq.{4) the coefficients & for these
states (and, consequently, sums of ES (2) as well) differ onmly
starting from the terms of order T/n® . On the other haud,

' =4~ "‘;"- for the set of states |n-m-1,0,m) with m =

=0,1,2,+.0 <<1, and that is way &€, and the reduced emergy

ST O LU JEE PR BRI LR W 00 RN YR G WAy g e g I R I TR T




5
eigenvalues differ -already in-the ferms ~ 1/n." The simplest

examples of states enomalously tlose to esch.other in variables

(1) are:
| - 2,1,0 and \n—3,9;2> e 2 = 1«3/:1 .
e - 3,1,1).808 - |n-4,0,3) . ar.az~4/n B ¢-1).

n =3,2,0> . \n-4,1,27 and }n=5,0,4> -, R =1-5/n

(see Fig.8). For the fields % - 6a5 Va-n'dr 8.0 L‘:V/cm:.our'calc;;—
lations are in full agreement uifh ‘the Kolosov's computatio-n[29]
performed by different method. Thus, the above proceduz_*e of BS
pummation is confirmed once more.

Bore detailed results for the Rydberg states cf a hydfogen
atom, including a comparison with experiment ere contained in
our forthcoming psper. . )

10. Coneluding remarks.

1) Similar to other quantum mechanical problems \:30“32].', S
divergence is net an obatacle for evaluating the epergy elgen-
valueg if one uses ap appropriate sumation method. In this case
‘application of HFA appears effective. Thig method is applicable,
in priaciple, to an arbitzﬁry state for which a large enough
number of PS coefficients is computed é) .

2) To mchieve 3 high pre-éision when swaming PS by HPA N‘(F)‘_
it was necessary to take N = 10315, i.e. to iﬁtoroduce inteo cul—-. :
culation about BOF100 PT orders. At such h:LE;h ¥ values PT coei‘-
ficients L, approach the asymptotics (5) determined by the .
E('\,_n,_m) {“é) at &0, Thus,- we

take this sxngularity into mccount at PS summation wiiich seems

Dyson (27 ]slngularlty of
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1o be necessary for successful summation of divergent PS.
Therefore ¥he number of higher PS orders computed exactly {or,
at leﬁst,.-ith high precision) should be of order of some tens.
Rowadays, such calculations are gquite real in quantum mechanics
but inaccessible for quantum field theory.

3) Both methods in view, IPA and 1/n-expanszion, supplement
each cher and allow one to describe the whole dowmain of the

perameters n and P of physical interest.

B e Ty T B T

AT e e w1 e e .
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Appendix A
L [18, 19!
According to refs.' ' “lconstent 4 entering eq.{12) is

N,y

Qi n) e)xﬂo[’b(ﬂ,_-—ﬂ 2}

Anngm™ = T (ngem)l A

) mz0 (A1)

Assuming n, >> 1 end epplying the Sti'rling formula we get

‘ 2V ) .
" -l VR .
%OOVVx‘& n ., a=éege—/g'i—v—— A >0 (4.2)

A n LM @_\,Di' - ‘J:" ’

where V. =(n+4i/2)/n , 1=1 or 2. This leeds, at.¥-»0 and’
2 »>1, to '
(n,nymm} : : 17'

r “~ —n A g —k
~enpl —h S i AL "1.\’2.1)

. (8.3)
k = Rna = 28.-8n2) % U )\, )b, +4 42 a2,
x. = -, - :
We quote the values of 14“) vy and ¢ {see eg.(12")) for some states.
4 )
For }0,0,n—1> ‘states we have 2 =0, A= zln n"'“'/n! .

k=i+2m2=2.386, =3P +50n+20) (a.4)

) - ‘ Bn—4) .
for in-‘i,0.0)states 3 'X=d_—-n"x1 - A =4 )nz

?

k=3 C, = Uiuﬂ,,("anz-*rﬁn-vSO) (2.5

for |0,n-1,o> : states: £ = -1,

L=ddn2-1=45%3 o=Lallan’sStneid) e
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' 2
and for \n1,n1,0>atateys r ¥ =0, A 222“ n“—e'/[('i%)!]
k=1+30n2=3.0%3, c=h=(ElHanr3’) )

(wben computing ¢, we used the results by Damburg and Kolosov [12]).
Finally, for ‘n1,n2,0> gtates

k =3+0-2)PWR)], p=342-2=00% .8)

which coincides =t R e=X{Owith (A.5)~(4.7). It is easy to show
that k,y schieves its minimus at VY, = 0, V= 1 and its

maximum at VY, = 1- V, = 4”7 = 0.1991 ... ( & =0.702, ks

4

=3+ 8¢ 3.398}. Thus, the consiant ((v“, in eq.{A.3)
2

changes from ~ 1.8 to 3.4.

At F >0

1-,"\“1_“9,"\'\)(%)/1-* (n-4,0,0 )(%) —

Lrg+m (A
=t (A danamE o] 4

hq,f ("\ 2.“"‘“)! €'n

Hence, the level widths fastly incresse with quentum numbers n

2

snd m  increasing (at fized n; Doy MK B and F'<< C.2n). As'
follows from Fig.9, this property is valid in strong fields as
‘well,




19
Appendix 3

ia n -» =0 , the Bohr-Sommerfeld quantization conditions

are

T

g{. B V
Sa;(“% —% ~F3~ e)m:_ 27V,
%

(8.1

2 S
e
2 \isi_t_&\,zii

waere 5. , h; are turning points (after scaling Ty
and so on). The integrals‘entering thege relations are rather
cumbersome el}iptic integrals. The situation is simi}li_fi;ed if
_m=0, We de‘ncte .

A e

. "t - |
I(E,k)=§cl-x(£-><+¢; s AP0 (m.2)

where x_ = 0, Xi_:i‘-.-[g +(.32+7\.)Vz‘1 >0 . Putt-ing first
€ <0, with the help of the integral representation of

hypergeometric function we obtain

S5 B 2 LA g, A=TVAFR
A= (- 2 —_ . - e S
1EM=2"ce) ROTZ- F(; R R A (5.3)

where 2 =A% . Phe Kummer quadratic transformation
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. _F’(‘Lu i i.*%) QJ—MSAF(??’ )

leads to & considerable simplification:

o 4-/2.
Hen = Faee)” Pl g2 - %) 5.0
Anralogously,
AL a2 .
de<£+x+ ‘fk) 2% £) F( -2 'é‘) (345)

( Xi‘—“—%(s +TE-L >0 ). The last two equations allow us to
reduce the integrals (B.1) to the form (13). :

Up to now we supposed £ < which corresponds to discre-
te sgpectrum, However, eqs.{B.4),(B.5) can be analytically con-
tinued to complex € valuee as well., It isiinteresting that

‘hey keep phys:.cal mean:.ng aleo at Rﬂ— £ >O describing the

energy and width of quasmtetmmry states. Tha gituation is

analogous to the cese of the Yul:awa potential [22]. We usge furtﬁer

the idemtities '’
(m’. e(-\-’i : Y 't'% 9)__
=0 Flg. Gy sin'e)=

._.((‘_039 F(o{ JZ ¥3M2%> ’ (B.%)

T EISUTIY UL LRI TR R W GRS T IR IR T QI L] LU L SR IR L <RI e B e e R (h e e e
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f=rpTe)/2 . Substituting here __c(--,;_ifz. P =5/2a0d
b= -\ we find S

i/

(e, M) =F AlE XN F("’zvg’zﬁ'i’*;ﬂ”ﬁ)“, S

W= Mz% _ %[i . @‘im‘frﬂ (BT
(O<w<t at -»f<s<oa)
When deriving this equaticn we supposed £ <10 but tha result may
be analytlcally continued- to £ > 0, contrary to eq.£3_4),‘hpplif
cation of this identity immediutelysléadéyiv eg.{18). . _ '

Note that the behaviocur of Te ) at A=0 eﬁsgnti&ll’x
depends on the sign of £ (ibla is due to thﬁ fact: that%w=

= 8(€) ). Por example,

I, Ay = =3 N )

(B.B).'
»L ‘ .
A= e g M e O00) (3.9)
and at £ =0
o 38 . T W : -
O =CX" | C=(gg) TETE) (8.10)

This follows from (B.7) if we take into account that-

oL+ b+ ol a V(—‘%:—+ M')
Fa, b, E02TE ‘5 4 £ F(q. _'[;._1‘)“ ' (’Lﬂ)r(éf)
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and can be as well obtained by s'direct evaluation of integral
(B.2) with € = 0.
In conmclusioniwe mote that (~ o0 < € < ac’)

[(,2) = 1€\ I(spn¢ &)

(Fed e
423%' , G—f".f*o-o.

. rr'rr"\ﬂ-“'!'l'”u- “Hr-hm'“’”'ﬂl"f" " ‘Ir|]lr"l"|\””l||n|-m|mr|mﬂ\-!'|n (IO 0T O PR AP RS 1IN T U R
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Footuotes

1) We use atomic upits; A =m = e = 1. The unit of electric
field strength is ¥ a.us = o eS/ #* = 5.182.10%7/ca. The
principal quantum number i n - n.l +n, +m+ 1 andm >0,

2} We computed such curves .f'.’or. n =30 and h- ™ .5'0" In the scale
of Pig.7 they are almost undistinguishable from.the limiting
curves, n .= &I , |

3) See refs. [2’18-"191.

4) This statement refers fo the region of moﬂ?-ﬂ*a:tely- strong
fields (F £3). ' |

5} The potential W (g) d%i gv; a g“ég . i3 con-
fining at all %> 0. Th:.s proper‘ty leads. to the- abcwe MeT -
ticned nullification of E,.h. for the g;t:altes- LnT,O,OD in
the 1imit ni'--».oo, see Pig.5. Nemely, in this case. A=Yy =0
and J&l(F k20. The firat of eqa.{13) is the-qua-sicl;&‘s‘aical‘ quan-

- tization condition in the potential U,,_@.')"—-—-'" T 1) g
(with only discrete specirum) while the secqnd ‘,equatlon in
eq. (13) reduces to identity, © = 0. L

6) At really accessible values of k 4100 {k is PT crder) there
is a restriction on the gﬁphcahiligyyf ofJ HPA in the strong
field regiom, ¥ Z0u.5.. .. J_ '

1) BB., Ou(FiK0 for the.. |0,0,2)states at F:> 10.2. e maxi-
mum of the function Swﬁ(._t-“)_.is._.:fom at B F = 1/3, 2/3
and eo for the states 'E’-04n2,0:> ]0,,0,m> am.d. | iy,0,0>

correspondingly { note. that Po>F, ) '

8) That J.s, S(p ) and & (F Jare finite and the. second dertva-—.
tive turns to- be_‘i‘n;:;n;tgg,... )

R TI TT R RE T T T AR e PR e P T A T e
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L | : -
. Pig.4. The electric-fieldrdependence of' &, =W '

F.(6,04)
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Pig.6b. Functions 0"'“1n2n(?},, see eg.(11), for states with
ny = n, = {n-1 Y2, m=C.
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le:(E‘), mee aq.{11}, for all states
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