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THE STARX EPFECT POR THE EYDBERG STATES OF HYDROGEN ATOM: Preprint’
TTEP. 87-182/ i

a!.géi?pcw, V.D.Bur, A.V.Sergeev, V.M.Wainberg ~ I.,A‘J.‘OIINPORIJQS‘?%
The Stark shifts and widthe for highly excited states,

n = 15#30, of hydrogen stom in strong electric field ‘é are

calculated (the é values exceed the clagsical ionization

fhreghold é* of the atom},The celculation method 15 summation

of divergent perturbation series(PS) by means of Hermite-Padd

approximants (i{PA}. The 1/n-expansion 1s also briefiy diascussed.

The regults of the calculntion agree with the experimental dais.

Pig. - 5 , ref. - 16

© HucTuTyT reoperyveckoR w skcnepmwmenta tuhoft duomkn, 1687



L. In the iast few years investigation of highly ex.cited,
. or R'ydbergtﬂsta_tes of atoms end molecules attracted & great
interegt end significant results were obtained in this field
{1"5'1. Recent experiments revealed resonances in atomic photo-
ionlzation cross~sections in the presence of external electric
field which correapend to n ~ 15%30 and are narrow encugh even
at pogitive energy, E > 0 (first for Rt and then for hydrogen
[_.2-5]). The existence of such states is ebsoluiely inexplicable
from the viewpoini of the classicel lomization model, but can be
explained using the WKB method which leads 4o approximate expresg-—
sions for the energy‘E_o‘ and width I LE"}. The relationship bet-
ween r'esonances experimentally observed in hiydrogen and Stark
quasistationary atates, their pogiticns and widths obtained by
numerical integration of the Schrodinger equation, were pointed
out in x-ei‘s.U'JI. Usding independent calculation methods 2 we
evaluated complex energiés, E::Eo-'"-r'/l , of these states
within a wide range of values of n and ® . The basic results
of our calculations are discussed below.
2. let Em‘nlml)' be the energy of atomic¢ level with
parabolic quantum numbexs n1..n2 and m (m =0), n = n1+n2+m+1 -
the principal quantum number, E-)— the e1ectric field strengtih

(we use Ato::u’.c units, %#mme—:—i , and the sane notations
as in X‘ef-[a}). The reaults of the calculation will be expressed

through reduced variadles,

gy 2 dfRaim) & _m n
£ AN E F=nb& = ,+¢‘/z =

*
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{ M +\!,L+-\J,_==‘L ), which are eapecially convenient in the case
of Rydberg states, n >>1. The region of strong field corresponds
to ¥ 2, P, where P, is ™the classical ionization threshold” (the
values of P, for different states of hydrogen atom range from
0.130 to 0.383, see rer.[Ch. or a1l rPutates R, Nm> with
given n, which are degenerate at s - 0, the states with minimal
values of Ry and m are the most stable (this iz easily seen from
the asymptotica 2) ror the width F(“*“ﬂ-"‘) ‘et & — 0). There-
fore, such atatea are of a particular interest for investigaticn.

The calculation resultaa)are presented in Pig.1 (for thebstarx
snifts, _E,’“f-i\n" Ra E':mt*“"m) ) and Fig.2 {for ths level
widtha, S: = n* r g, m) ). Here
£, = En— by = 2t (B ~{T72)

n

The 1imiting curve, W=o00 , defined by the equation
/2 s 2
) =Rk %2 1eF/E ) (2)

is also shown in Pig.? ("the Rydberg 1limit" corresponds to v,=1 ,
\)2.=JA =0 , gee ref.[al). Note that Pwdependence of E:,:
is almost linear at 0.3 <P < 0.8. At F = 0,.4%0.5 the resl part
of the epergy reverces its sign 4), yielding the quaslstationary
level with positive energy.

Pig.2 shows that for fixed n and P the]h—-ijo, 0) states have
the smallest ionization probability. These are followed by \'A-Z,O;L)

states, next come \’ﬂ%,O,'l,) and \h—ﬂ.,‘L,O) states, etc,
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. i . . ’
The values of" Eh and especially E,,,‘ , for the latter

states are' very c¢lose to each other {see, in particular, Pig.3).

This cen be easily explained whern cornsidering the siruciure of

PS: _
Eﬁﬁhlm):;%rﬁéi(:mmm)i:k | o

where k is PT order,
?;(ﬂez,ymai/n*) , k is even - (4)

%P (@ M AM) |k 1g oaa

e .—-_-(_YLL"‘nQ/ﬂ _“"‘_\)1_—"2. end Py is polynomial of degree [L./Q.—_[ .
2=, B=3 . RyR)=-%UF-tx-9y+1dw), '

E;__%E(gfs-—x Ly +331) , e

(here X =%* , Lj,?'-“-‘jv\z‘ . 2z =A/n* Yo

The n—2,1,0> and IN—3.0,2> stetes have the seme velue of
2 =41/ Qiffering only by the parameter sz, , 1,e. by the
terms of order 1!112 '.. On the other hand, .';E’. =L“CM+’1-)/V_\

for |A-mMm—4,0,M>  gtates with m «<0,1,2... < < n. Therefore,
) 1 Agm) ’

. ",
the coefficients 'Sk end the sums é (F') of the corresponding

PS(3) differ slready in the terms of order 1/n.

113
The wvalues of E:\ and &, recalculsted from the experi-

zpental data[‘;—l according to photeoionization of hydrogen atom are
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alsoc shown in Pigs.1,2 (rote that for & = 6.5 and 8.0 kV/cm

[6]

different method). There is an obvious agreement between theory

our regults agree with the Eolosov's calculations  “performed by

and experiment.

Io Figs.4 ani 5 the calculated energies of the Stark resgo-
nances are comparéd with experimental spectra iaken from ref. 4.
Itris seen that the positions of spectra maexrima correspond to
the values of Egr , while the peak widths qualitatively agree
with S,f' {Pig.5 partly overlaps the Figure in ref.[ﬂ).

Thus, the theoretical calculstions of the Stark rescnances in a
gtrong electric field agrée with experiment, includimg the E>0
region, until the Stark resonances remain isolated. Ada is aseen
from Figs.4,5 thg level width rapidly incresses in the region

E 0, even for the in~1,0,0> states which ére the states with
minimal ionization probability. Besldes, the calculations show

a decrease in the difference between energles of \n¢,0,0>.

and \ﬂ;,&,O} atates in this energy region. The above features
rendily allow one to understand the qualititative characteristics
of the spectra measuredtB-SJin_the vicinity of 5 == Q.

3« Comments on the-1/n;expanaion. We will consider here only

states with magnetié quantuﬁ numbef m=0, ITn this cese the integ-
rals entering both the Bohr-Sommerfeld quantization rule and its
.correction term of order ¥Iz can be c¢alculated analytically
{(see Appendiz 4). We gef the following equations foxr the energ&

and separation comstants [3; 4 :
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3/2

g'(zﬂ-}_ :'\)‘1 )

PN i TR Sy
BT Ea b g =, (5)

\554_4‘552.. ='1_

. ) 2
where \)‘_4—\)1‘:-..1_, ,J’V\”—"O> 21‘“2—16&1_‘:/52‘1 Ezziéﬁp/ﬁ)

fzy=FlEZ3252)
‘ 12 (6
g@)=%F& 542y w5 P& as2E) )

and F(J,ﬁ',{;?;)’—-zﬂ@,@); K:?) is the hypergeometric funct-
ion. The nopaccounted for in eq.(5) corrections do not exceed
n~t {see eq.{(4.3)), therefore, in the cese of Rydberg states,
eqs. (5} are quite precise. Punctions ‘f&) and 3,(&) are real for
- o0 <2 < 4 and have singularities at z = 1 (for further
details see Appendix B). Note that Z, =1 correspondé to the

¢lussical ionization threshold, P = Py
At P -»0, hence it follows from (5) that >’

g = —-1+3nf - -‘g(ﬂ —3%%4 19,7 s
+ 22BN (@)

Pu=g e+ 302 NP - Batei R

()



P
{ o is obtained by replacing X~ —% , F ——F ) which
coincides with PS in the weak field region. At an arbitrary

value of P, equations (5) masy be easily solved numerically. Until
F<F,=F0,v%) the solution £(F) remains real and
agree with the results of IPA for g;thus confirming the chosen
method of summation of divergent PS. &t F > F, , £(F) becomes
complex 8 which makes it possible to calculate with ithis method
not only the shift, dut also the width of the level (compare with
the case of the Yukawa pc:n'ten‘l:is‘\lt-1 11). Apert from ites practical
value ” , this fact is of essentiel importance for the 1/n-
expansion itself. Such calculations are now in progreas.

1/n-expansion follows from eqs.{(5):

) (e
o £
£E=¢ *'ﬁ'*'%f*ﬂu (8)
-]
Iet N, >N, ~4 « Then E( ) is defined by eq.(2}

and  £% - by (C.5). Note that ET(F)=0 st F = ®, , the
function _E(”[F') having mo singularity at this point and remain-
ing real in the region F >F° .The next coefficients ECL) in
(8) already have singularities at F = Foz 7

£ &£, 5 + oL, §¥+

w {9)

X LEEN -
£ ==5~’~‘£[1-(—.11-§-) +..1. eP

3 e

where $ =(F-F)F, -0,



.
F,=F 4,0 = Qy/9n) = 0383,
L= (/VRE =0.903.. .

o, = —0.0633...

t10)

ana {=FWO/ TGN | g 754 (tor actails see Appendix €).
Thus, 1/n-expansion is not valid in the wicinity of F = Fo 7)(35
is the case for other quantum-mechanical prtﬂa]_.emsU"l J.

4. In the weak field reglon, the distance between neighbour
levels grows linearly with % . Oﬁ the other hand, for strong

fields

2
AE =¢% (11)

wheretélc = T.47#0.2 tor states with n ~ 20 and energy B noer

zero 8) . This relationship can be eamslily explained by 1/n-expsn-~
sion, If nN-»co< and guantur numbers hz,m are of the ordér of
unity, then J’ﬁ_(F')E i, pF=0 (sce, e.g. 2q.(7) at
k=1 and 1/n = 0). Therefore, eqs.(5) are reduced to one eguation

(2}, whence

4E = T%L“ = - S s :
dn\E-—-—-G N TS W T (12)
Here
oy =12F €W g (k)™ > (12')

k
and 5( ) are coefficients in expension (8). Thus, Co=
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e

= 3.708 (in etomic units). If energy E is measured in ch-1 and
electric field & in kV/cm, then ¢, = 7.54 which is quite close

to the above meniioned experimental value (see also Table 1),

We mre grateful to E.A.Solovyev for useful discussion and

for drawing our attention to the workts].



Appendix 4
The aystemtic,derivationjof higher orders of the WKB quan-
tization rule has been elaborated by many euthors , see refs.,
[12'.1"-]. The one-dimensional SchrSdinger equation .
)ﬁh' I . _ ‘v
Tam T AV =BY
) - FRE
is reduced by mesns of substitution ‘f’(X)=€41o'{‘i-S§(x’)&x’}
to the Riccati equation for the function E(x). "
. oo, .
Substituting into it the msymptotic series 5(x)= ?‘ZO.L-'-;‘) £,
Dunnaz '23pes obtained an explicit form corrections - H%
and -~ 4’1&- to the Bohr-Somerfeld quantization rule: :
§pdx(t - 7 [&¢*] -

. 148 ' # i . -
- %{43[&;(9’) 1~ 2569 ()’ }+<9(ﬁ‘))=2x(nw§3 Y

where  p(x) ==[2/m €= ‘V(X))}vz‘, (PZ)’-—_: A0p*)/dx ‘ and the
Aintegration contour is to -en_eloae. the turning points in the _
complex plane of x - (for more idetalils see refs. U?"_”J)._ gxten-
sion of eq. (£.1) to the Stark effect in a hydrogen atom was per-
formed by Bek ‘1sté1n qu Krie_gei-[wl._: " '

93=—£6;+¢-§E+%‘——g.§1 o (a.2)



10
i similar quantization rule holds for the 1? variasble except
that & is replaced by — &, . by 2 snd n, dyn, . '
Consider m = O states wl_iere the integrals entering eq. (Ae2)
are expresgsed through the hypergeometric functions. Performing
the scaling tranaformation (1), ;‘-'-—hq')( and ?=Y\l% , we get:

1/2. d@ 2
g I T e

Q |
- phor B R - e Bl e

2,00 =py x FHEX=EF X,

e 2 4 . {1.4)
Q=Y TREY F TPy

Phe possibility of evalusting integrals in eq. (4,.2) at m = O

to hypergeometric functiona was indicated by I)xw.xlr.rzu-ev(-“sl . How=
ever, eqs.(4.6),(A.7) were not obtaimed and as & result the
equations :or‘ £ (F’) in ref.[151are more complicated than egs.
(5). As follows from eq.(4.3), the actusl parsmeter of the WXB~
expansion is 1/u® . We will restrict ourselves to only two terms
of the expansion {A.3), sssuming £ < ( during the calculat-
ions. The final results will be applicable after ansiytic conti~
nustion for the case £ >0 as well. The integration comtour in

eq.{A.3) encloses two turning poinia,
X, =0 X, =2 +E* 6 g, F Y

leaving the root x, £ O of the function Qlix) outgide. The firat

term in (A.3) ia
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=57 Sfyou0a]” =T R )

i L —-—vi—z [
mhere /K= TEVET ' $uFl This

expression can be simplified by meens of the Kummer quadratic

tmsfomation (1 6 3

. |
F2d, 2.4~ JH—»LJg, %)_(LMEJ?YF(**”.L;&;Q (4.5)

In this case L= /4, pe2, ‘12':(1“”@):"2?/5 ,
X o= L € 10 p, FYVA] /2F o We get

T,=Tp eV PR 25052) 2y = —16 b F/EY (1.6)

To. calculate the second term of eqe.(4.23) we leave unthanged the
first power of derivative dQ/dx under the integral sign, substitute
the ssme second factor explicitly as AQ/dx =J5L+’§-’S.X '—’%F x*
and integrate by parts . '

xdx ol(Q A Xk — \
L= c,w~ 5 \dx) raCH A A oL B
where (] = 0,1,2)
- RS VoY Ry
K} = 3}F §£Q(fk1>(xz—k)1 X} z&k:
) (1.8)

=34 -t =3 .
=85 (f“z””%?’frf)w PO is)
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This expression appears to Dbe indefinite at J = 0 and 1 and this

obatacle is removed in a standard way:

Co4 ey o TN (o) et o e
;;Pf::n T \n ¥ (J- 1}:{)?-') ru)‘—v(}) ] z F&m&wbhﬂ ,?__)

Then applying transformation (A.5) to each Ky (with =T/ -}
and 5’; ='b-£, ) we obtain the correction of the order 1/n2,

*

Y (8 \
L= B nt(-£ V% %’(2*-’? (1.9)
) =3F(%, Ti12) -2 F (R B2 )+ o
St 4 ..
*-EH?F(1;?%;13::E) (‘.10}

This expression c¢an be further simplified. Indead, the functions
%1_ s %72 Dbehave simgilarly at z-»13

3@ = 3F (%, 3ty -2F (2 T v ey

(A.11)
. Tt
%L(%),:_%“E F(% >% -:3:23% URGE E) N
%
e=2 /2R . Therefore, it can be assumed that g,i_(z)
iz & sun and t}m(?:) 18 the difference between two fonct-

ions, one of which has a pole and the other hes only logarithmic
singulerity. Suitable candidates are:
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R
2 (& ey Fata-ne,, ]

FEZi62) =

2w}

2.50000) = 2o Thta)e (he
FEZ23) = o Bnlem)r btan)r. ]

Using the Kummer quadratic transformation, we procead to ai-gu-
ment Y = {-Vim Vi+viT) .,

F (%,%;1;3) ={g+uy™ Fx %usu),

P %22 = wruP £ (%352 uy, ..
Then we come to

$1a® =Wl by < g (A2

hy(u) =1 F(%n%;t;u)-*z(ﬂ.-msp(%,%;z;u)

hy (W) = %—E, ulruy F (5.% 53 wy

Purther we use Gausa ralations for contiguéns hypergeomet-

rie hmctiona[.’sj. After some simple, thaugh lengthy calculat-
ions we get
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hiw =4F & 3050) +2F (%% 520w

=5 FGo% 80 —F (0% s23u)]

Taking into sccount eqQ.(A.10), we finally obtain:

gy=% F(Z,.5:02)+ §FE 552 2) (x.12)
The guantization rules (5) follow from eqs.(A.6),{A.3) =nd
(a.12).

Appendix B

let us glve expanaions for functicns ft?)and g(E)defined
by eq.(E). At z >0

o9, k =) =) *
Sy =o R =Ar Rzt pm et
. (B.1)
- L 25 15 %
B T S U TR
=0
whers
(4l-O!f _ ‘
‘S-k:: i (k) o > S»o =4 (B.2)

g, =5 Qke3)uk~1)
(8.3)
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At z = 1 these functions have singularities (besides f£(z}
remains finite):

f)= A (1+ b thet +b7 + O#2bt))

$0)= A (Fratt v o v ) @)
j, .

where 7 = 7-2-> (7)

A = ,@yz/3ﬁ“- 1.2004

6‘, = 3/16’ 6{ - ‘,?fé-— {13 - 18 1112)‘ ‘0.03270-1'.
- - ud L - . s

Pinally,, at Z = — oo

— Y %%
f2) = (-2 +0(2 //; 23) =pC8 o,

where >
2 - /A - es. (1
we $(30)" p4(2)", pesssm ()
Appendix €.

For states with n; —> oo n, end m ~1, the first term of
Vndexpansion £  1s defined by eq.(2). Making use of the
Eurmer quadratic transformation it can. be re-written in a more

convenient form:



16

. 1/4 i 5 \
(e* +16F) = LlZ>T 3% w)» W=%@;"'ﬁ§é~q~z?)(c-1)

with F=n'% increasing , &2 £ lhanges from -1 to ©° .

while variable W changing from O to 1. Substituting
£ =0 inte (C.1) we get
4
i 5 .44
S FACR LI ) (c.2)

It follows from (B.?1} that ' ag & tunction of P 1is not
singular at P = F ané therefore may be expanded in series (%)
in integer powers of f. Coefficients oL, jedy .., may be calcu-
1ated successively, substituting expansion (9) into eq.{C.1):

-4/ ’
e R S EE R R CAL PR T L

{C.3)

= §F O Ea)/ar Gk

1

This leads to values {10) for P, and ol provided the following

identities are taken into account
Flo,ps bt oy = PO 5 00 )..

_.,,_uz. r( Jt,-r{)/r (.LM r(
(C.4)

GRS S RA ﬂ"‘“"if«%éi)/r(.%)r(%).
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({ < = 1/2, L= 5/2). Prom the system of eq.(5) we also

obtain the next term of 1/n-expansion

G (@) g A CEN M 1)
£ = ()¢ — oA ,

¥ =—me 7 (S . CF=A5F =5 (a5)
GEB-x)=)
fet ({ r: G
e g e )C
X =46F /= ¢ =(r-r)r,
Hence
= —anBF+3FL), Ba0 o

(this is in an agreement with PT series. (7) 1f we take into -
accocunt that 22 = 1- (?_n'2 + 1)}/n), and at ?-v-r’
we come to (9).

In concluaion let us clurir;r the origin of eq.(12). Difter—

entiating E == Zn Zgu") with respect to n .
and teking into account that g )-—g " (n? %) we get
dE. (g e 22 Y kg (W) ok
d _@‘/ ) %@FS ~ 22 9N .

<

Atk =Oand PwP wehave £ =0 , F‘S{."mo(t,hence-

=24, F'%_ (w¥ /2> | (c.8)

where ) 1s & constant introduced in eq.(10).
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Footnotes

1 Ramely, summation of divergent hyleigh-SchrSdinger pertur-
bation meries (PS) and 1/n~expansion, (More details sbout these
methods are contained in refas, [8‘91).

2) pt 70

r(hmzm) 5 e’sn ( [1h )Q-n;j'bhﬁ-‘i {_, __Qﬁ}
~ ol ingrmitn? \e*F %P7 3F

3 When summing PS5 we use quadratic Hermite-Padé approximants
(BPA), see eq.(5) in ref.tsl. In these calculations 50460 orders
I | were used which provided am accurscy of ~0.1% for the

energy eigenvalue (in the region ¥ ~0.5).

4 In particulsr, the limiting curve corresponding to Nn=eo

traverses gzerc at F e F_ = 0.3834 ... (see eqs.{9),{(10)].

5) ¢ the verisbles

t, = oy ey

are introduced, ihe quantizetion conditions (5) take the form

which is more convenient for iteration:
t 5z — F (t -t-tL1
1 L} e 5 g(z,) =Y

t,5@) %;;,(’Cﬁtz\sg(z,): Vy,
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waere z w2 16 F t(ty + £,)° , L = 1 and 2 watle
=2
e - (g + 1)
whence one can easily oﬁtain expansions {7) from these expreg-
- — 3 % ,.___’L : —_ e Y %
sionsz Tamv  (FN gnz)P"‘... - tamY (‘i‘\’z"';'—“‘m F o,

6) See, for example, eq.(9) for coefficient g .

7 1/n-expansion is the most appropriate method in the case of

a >>1.

8) Here B is measured in cm"‘, % - in xV/cm. Note that

£a 0,913 . 1075 n%5(cn1),
100 cn™' = 4.56.107% a.u. = 0.0124 eV

B See ref.DOS. We have corrected heére a misprint in eq.(15) of
this paper,

19) 14 should be emphasized that the possibility of reducing
integrals entering eq.(A.Z2) at m = O to hypergeometric functions
was indicated in the er[TS_! by Drukarev. But expres-sions {a.6)
and (A.3) were not obtained in that cese ow.ing t¢ which the equat-
lona for E(F) inDsjare more complicated than eq.(5).



Specings of the Stark resonances at the threshold (E ~z0)
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Table 1

ag & function of the electric field é B

£ ,xViem At , en”)
exp. theor.
4.5 23.740.6 23.3
6.5 29.540.7 30.7
8.0 35.6+0.8 35.9
14.4 54.541.5 55.8
16.9 64.0+1.5 62.9

Footnote; Experimental values of A& are teken from ref. [41,
theoretical valuen corvespond to eq.(11) with

a T7.543.

~

c
<o



. "RINFLY Jo Lowinoow euy
UTHITM ePTouTeD wmermas (2 ‘0 ‘zz] e 0 ‘4 ‘c2| 2oz ssarno eyg W AN FryL = e A
PUR WO/AXR O°f = 1 - 4 CwOo/AN §r9 = F /Sy mwp TeauewTiedxs ~ © ‘sptimex
UOTANTAOTEC O3 WIW SOAIND PITOR ‘WOYw UeFOIpAY LT REOUTUONSL NITLE OWF JO ERTIIEUR WY L




22

*(1 374 UT 98 SWEB BY3 °IVW FUOTWIOU) BOAIND

au3 4% ueat® sxw w ‘“u ‘lu slequmu mjuendb oyTOqEIRG

— U ¢ 1o
As_as.,Sr— aK l:m g80UNUOERT XIVE oUY JO WUIDTM dUul *2°F1d

dgo 20 90 50 0 €0
T T i ; 1 — eeen ()
0% \\\\\\\\\\ .
» a + y 1500
<0052
00'ezl 2 A
00%H | :
+ - .
. 4010
<Fowel
<ro'ee
0¥ 1610
wree 3




23

*pasn Furteq hnoomm,nOﬂ»unuSpudn Jo ®Iapao z§

‘yqr Fursn nOﬂpnsﬂdw gd £q peasleTNOIVO sled waAdnO L+

. Wty ty
93939 42 & U Y .nAou { wdw‘ = ; 2 ) oazTue xIeip eng *C¥TA
AL LY) g -

s v 4 A 12 re

HEV -

-0

1 #o

b 4o

r 0
arhy




" 80
iL_——AL_.?O‘
ph g ] 5
¥ 200! ]
~ 210
=4
'if
¥
|
__Eigi___,_J

. o]

M
n=18 19 20 21 22 23 24 25

LA D AD oo

n=1? 48 49 20 214 22 2% 14 25

L L AAAAD e

=100 __ ? 100 E,emt
Fig. 4. The experimental apectrum“ of hydrcgen &tom photioionizat-

ion at & e B.0 xV/cm. The results of our calculations
for ln1. c, 0> and ln,, 1, O> states are presented
below (the mpex of triangle indicates the resonance

energy B_-and its base represents the width o

e s e
=h |~: N;‘ NK ‘
th A VAV
SN
R [ T S T

n=13 20 24 23 23 2% 25 26 27

L LA

n,=483 W0 24 22 2% 2k 25 26 27
IAAAA&NN“”
T g
-100 f00  E, emM

Pig.%. The same as in Pig.4 at ‘é- 6.% kV/cer (100 L

= 0.0124 V),
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