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Abstract

A recently developed perturbation theory for solving self-consistent-�eld

equations is applied to the hydrogen atom in a strong magnetic �eld. This

system has been extensively studied using other methods and is therefore a

good test case for the new method. The perturbation theory yields summable

large-order expansions. The accuracy of the self-consistent-�eld approxima-

tion varies according to �eld strength and quantum state, but is often higher

than the accuracy from adiabatic approximations. A new derivation is pre-

sented for the asymptotic adiabatic approximation, the most useful of the

adiabatic approaches. This derivation uses semiclassical perturbation theory

without invoking an adiabatic hypothesis.
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I. INTRODUCTION

Large-order perturbation theory has been widely used to solve the Schr�odinger equation

for systems with only 1 or 2 degrees of freedom, and occasionally for 3-coordinate problems

[1{4], but rarely for larger systems because it becomes increasingly di�cult to compute

expansion coe�cients to su�ciently high order. A recently developed self-consistent-�eld

(SCF) perturbation theory [5,6] reduces the computational cost by introducing a separability
assumption. Here we apply this method to a simple 2-coordinate test case|the hydrogen

atom in an external magnetic �eld.
We will use this system, which has been extensively studied with a wide variety of meth-

ods [7], to examine the accuracy of the separability assumption. In particular, we will
compare the accuracy of the SCF approximation to that of adiabatic approximations. Our

method is based on a semiclassical perturbation theory [8{13]. At �rst order in this pertur-

bation expansion the Schr�odinger equation becomes exactly separable in terms of a set of
normal coordinates. These coordinates are a natural choice for a separability approximation.
For a one-electron atom in a magnetic �eld the normal coordinates are the cylindrical coor-

dinates (�; z), with z along the �eld direction. It is well known that in the limit of in�nite

�eld strength the exact wavefunction is a separable product in these coordinates and that

the z motion is much slower than the � motion [14]. This is the rationale behind adiabatic
approximations [14{21], in which a solution for the � motion is obtained with z treated as
a �xed parameter. These approximations simplify the computation of energies and provide
a qualitative understanding of the energy level patterns [7,21]. Approximate methods are

not as important for this problem as they used to be, now that increases in computer power
have made exact calculations feasible for any �eld strength [7,22]. However, the asymptotic

adiabatic approximation of R�osner et al. [21] is still useful for calculating quantities such as
partition functions that require the computation of many energy levels.

Adiabatic approximations and the SCF theory are similar in that, in principle, they

both become exact in the in�nite-�eld limit. They di�er in that the SCF method includes
no assumption about fast and slow coordinates and uses a separable wavefunction at all
values of �eld strength. They di�er also in that the SCF perturbation theory becomes
exact not just in the limit of in�nite �eld strength but also in the limit of in�nite magnetic

quantum number m. Thus, the error from the SCF separability assumption can in principle

remain small at �eld strengths at which the adiabatic hypothesis breaks down. We �nd in

fact that the SCF results for energies are accurate even at small values of m and at relatively
smaller �eld strengths.

Sections II and III describe our calculation method and Section IV shows representative

results. In Section V we compare the accuracy of the SCF theory with that of the primi-
tive adiabatic approximation of Schi� and Snyder [15], the true adiabatic approximation of

Baldereschi and Bassani [19], and the asymptotic adiabatic approximation of R�osner et al.

[21]. The asymptotic method was originally derived as an approximation to the primitive
adiabatic method, yet it tends to be the more accurate of these two approaches. We show

that the asymptotic method can be derived as a second-order semiclassical perturbation
expansion, without assuming an adiabatic separation of variables. In Section VI we discuss

our results and describe some potential advantages of the SCF theory.
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II. SEMICLASSICAL PERTURBATION THEORY

Mlodinow's semiclassical perturbation expansion [8] is an example of a class of per-

turbation theories in which a discrete dimensionality parameter is treated as a continuous

variable [23]. These \dimensional" perturbation theories are being applied to an increas-

ingly wide variety of problems in condensed-matter physics, statistical mechanics, particle
physics, polymer physics, and chemical physics [24]. In the case of the Schr�odinger equation

the perturbation expansion parameter is asymptotically proportional to 1=D, where D is

the dimensionality of coordinate space. This expansion can often be computed to very large
order and accurately summed at D = 3 [11{13,25{29].

The nonrelativistic energy levels, in atomic units, of a hydrogen atom in a uniform
magnetic �eld B are E +mB=2, where m is the magnetic quantum number and E is an

eigenvalue of the operator H = T + V ,

T = �
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2
: (2.2)

In these units B = 1 corresponds to a �eld strength of m2
ece

3
=�h3, which is approximately

2:35�105 T. The kinetic energy operator, Eq. (2.1), is expressed in a form valid for arbitrary
D [30]. The coordinates (�; z) are cylindrical coordinates with the z axis oriented in the

direction of B.
Let

� = [jmj+ a+ (D � 3)=2]�1; (2.3)

where a is an arbitrary constant. We will use � as the expansion parameter for the per-

turbation theory [31]. The main purpose of the shift constant a is to preserve � as a �nite
parameter at m = 0. The dimensional scalings

� = �
�2~�; z = �

�2~z; E = �
2 eE; B = �

3 eB; (2.4)

of the units of distance, energy, and �eld strength, respectively, yield the eigenvalue equation
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eB2~� 2 � eE�	 = 0: (2.5)

Note that the only D dependence in Eq. (2.5) is in the parameter �. Therefore, we can set

� = 1=(jmj+ a) (2.6)

and consider � ! 0 as equivalent to the limit of large jmj.
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In the limit of small � the factor of �2 plays the role of �h2 in the Schr�odinger equation
for a particle of unit mass subject to an e�ective potential

Ve�(~�; ~z) =
1

2
~��2 � (~� 2 + ~z2)�1=2 +

1

8
eB2~� 2: (2.7)

In the limit � ! 0 all of the eigenvalues collapse to the value e
E0 = Ve�(~�min; ~zmin), where

(~�min; ~zmin) is the minimum of the e�ective potential. This minimum corresponds to ~zmin = 0

with ~�min equal to a positive root of the equation eB2~� 4min = 4(1 � ~�min).
In order to have a formulation suitable for the entire range of �eld strengths, we introduce

a further scaling of distance and energy with the substitutions

� = ~�=~�min; � = ~z=~�min; (2.8)

which yields the e�ective potential

W (�; �) =
1

2� 2
�

1� g

(�2 + �2)1=2
+
1

2
g�

2
; (2.9)

where

g = 1 � ~�min = eB2~� 4min=4: (2.10)

Variation of g from 0 to 1 corresponds to variation of eB from zero to in�nity, according to
the relation

eB = 2g1=2(1 � g)�2: (2.11)

Higher orders in the perturbation theory are obtained by introducing displacement coor-
dinates q1 and q2, de�ned by � = 1+ �

1=2
q1, � = �

1=2
q2, and then expanding W in powers of

�
1=2, and collecting terms of given order. At order (�1=2)2 we have a Schr�odinger equation for
a harmonic oscillator. In general, the next step in the analysis would be to diagonalize the

harmonic Hamiltonian with a normal-mode transformation. However, in this case there is

no coupling between q1 and q2 at this order. Therefore, q1 and q2 are themselves the normal
coordinates. The Schr�odinger equation is"
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and the perturbation expansions for the e�ective potential, the wavefunction, and the scaled

eigenvalues, respectively, have the forms

W = ~� 2min
eE0 + �

h
1

2
!
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1q

2
1 +

1

2
!
2
2q

2
2 � a+ v(q1; q2)

i
; (2.13)

v(q1; q2) =
1X
k=1

�
k=2
vk(q1; q2); (2.14)

	(q1; q2) =
1X
k=0

�
k=2	k(q1; q2); (2.15)

� � ~� 2min(
e
E �

e
E0)=� =

1X
k=0

�
k=2
�k: (2.16)
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The vk in Eq. (2.14) are polynomials of degree k + 2, and �k = 0 for odd k.
At �rst order in � the expansion coe�cient for the eigenvalue is

�0 = �
(1)
0 + �

(2)
0 � a; (2.17)

in terms of the harmonic eigenvalues

�
(i)
0 = (ni + 1

2
)!i (2.18)

with harmonic frequencies

!1 = (1 + 3g)1=2; !2 = (1� g)1=2: (2.19)

III. SELF-CONSISTENT-FIELD THEORY

Let us express the wavefunction as a separable product in terms of the normal coordi-

nates,

	(q1; q2) =  
(1)(q1) 

(2)(q2): (3.1)

The SCF equations are"
�

1

2

d
2

dq
2
i

+
1

2
!
2
i q

2
i + �v(i)(qi)� �

(i)

#
 i(qi) = 0; (3.2)

where i = 1 or 2, and

�v(i)(qi) = h 
(j)(qj)jv(q1; q2)j 

(j)(qj)iqj ; (3.3)

with (i; j) = (1; 2) or (2,1). Eq. (3.2) yields the \best" solutions for the  (i) according to
the variational principle for the energy. The SCF approximation for the total energy can be
calculated as

� = �
(1) + �

(2)
� h 

(2)(q2)j�v
(2)(q2)j 

(2)(q2)iq2: (3.4)

Let

 
(i)(qi) =

1X
k=0

�
k=2
 
(i)
k (qi) (3.5)

and

�
(i) =

1X
k=0

�
k=2
�
(i)
k : (3.6)

Substituting these expansions into the two SCF equations and collecting terms by order

in �
1=2 yields two sets of perturbation equations that are coupled implicitly through the

dependence of �v(i) on  (j).
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Consider the expansion of �v(i)(qi) at some arbitrary order �k=2. Substituting Eq. (2.14)

for v and Eq. (3.5) for  (j) into Eq. (3.3) yields a sum of the terms h 
(j)
k1
jvk2j 

(j)
k3
i such that

k1+k2+k3 = k. However, the smallest possible value of k2 is 1, which implies that the largest

possible value for k1 or k3 is k� 1. Therefore, the equation that determines  
(i)
k depends on

the  
(j)
k0 only for k0 < k. Thus, perturbation theory uncouples the SCF equations order by

order. Detailed derivations of the perturbation equations are presented in Refs. [5] and [6].
By assuming separability in terms of the normal coordinates, we ensure that the SCF

theory will be exact to order � in the energy expansion. The error due to the separability
assumption will be of order �2.

IV. RESULTS

The SCF energy levels can be uniquely labeled by the magnetic quantum numberm and
by the harmonic quantum numbers (n1; n2). The expression for the eigenvalue E is

E = (jmj+ a)�2 eE0 + (jmj+ a)�3~��2min�; (4.1)

where a is the arbitrary shift parameter. � is calculated as an asymptotic expansion. In

general, we choose

a = n1 + n2 + 1; (4.2)

so that in the limit B ! 0 the zeroth-order term in Eq. (4.1) yields the exact hydrogenic

energy.
For the exact nonseparable problem, (n1; n2) are true quantum numbers only in the limite

B !1. As eB is decreased, all but the (0; 0) and (1; 0) states will undergo avoided crossings,
which occur at eB values for which the harmonic frequencies are in integer ratios. At very

high �eld strengths the avoided crossings are sharp and well de�ned while at lower �eld
strengths they can be broad and complicated [32,33].

One can expect that the major qualitative di�erence between the SCF eigenvalues and

the exact eigenvalues will be the behavior at avoided crossings. The separability assumption

ensures that for the SCF results (n1; n2) will be good quantum numbers for all values of eB.
Thus, the SCF eigenvalues will cross diabatically. Figure 1 compares exact and SCF results

as functions of the parameter g for a manifold of states with jmj = 30. (g = 0 corresponds
to eB = 0 and g = 1 corresponds to eB =1, according to Eq. (2.10).) This Figure gives the

energy as the scaled quantity

�
0 = jmj

3[E � jmj�2 eE0(a = 0)]; (4.3)

which is simply the value of � that corresponds to a = 0. The advantage of �0 is that it
omits the uninteresting but strongly �eld dependent zero-point energy and, in contrast to �,
it uses the same scaling factor for all values of n1 and n2. We obtain convergent SCF results

for � over almost the full range of g using Pad�e summation. It can be seen that the SCF

results are very close to the exact results except in the vicinity of broad avoided crossings.
Figure 2 shows the accuracy of the SCF approximation for the binding energy (the

di�erence between the total energy and the energy of a free electron in the magnetic �eld) in
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unscaled units as a function of B and m for the \circular" states, (n1; n2) = (0; 0). For given
value of B the accuracy increases signi�cantly with increasing jmj. This is consistent with

the fact that the underlying separability assumption is exact within �rst-order perturbation

theory in � � jmj
�1.

For given jmj, the error from the SCF approximation at �rst holds steady at the �eld-free

value as B increases. Note that the �eld-free H atom is not separable in the coordinates � and

z. Then at a critical value of B, the accuracy begins to improve, with the error diminishing
approximately as B�1=2. The increase in accuracy begins when the �eld-dependent termeB2~� 2=8 starts to dominate the coupling term �(~� 2+ ~z2)�1=2 in Eq. (2.5). The critical value

is smaller at large jmj, since B = (jmj+ a)�3 eB. At this critical �eld strength the magnetic
�eld and the Coulomb �eld on the electron are of the same magnitude, since the radius of

the electron orbit increases with jmj as (jmj+ a)2.
We have used Pad�e approximants to sum the perturbation expansions. For the results

from which Fig. 2 was prepared, the approximants converge with a precision that is greater

than the accuracy of the underlying separability assumption. The rate of convergence slows
as B increases. This appears to be due to the fact that ~�min approaches zero in the large-B

limit, which causes the expansion of the Coulomb term in Eq. (2.7) to diverge.

V. COMPARISON WITH ADIABATIC APPROXIMATIONS

There are three di�erent computational techniques that have been referred to in the

literature as \adiabatic approximations" for the one-electron atom in a magnetic �eld. The
earliest is the method developed by Schi� and Snyder [15], which we will call the \primitive"
adiabatic approximation. That approach is based on the approximation

	(�; z) = fn1;n2;m(z)�
(Landau)
n1;m

(�); (5.1)

where the �(Landau)
n1 ;m

are the well-known Landau functions [14], which result from solving the
Schr�odinger equation without the Coulomb potential. The Landau quantum number n1 is
equivalent to our harmonic quantum number for � motion in the limit � ! 0, while the
quantum number n2, which is equal to the number of longitudinal nodes, is equivalent to

our harmonic quantum number for z motion. The longitudinal functions f are determined

by solving Schr�odinger equations with e�ective potentials

V
(Landau)
n1;m

(z) = �

D
�(Landau)
n1;m

j(�2 + z
2)�1=2j�(Landau)

n1 ;m

E
: (5.2)

The second approach [19,20], which we call the \true" adiabatic approximation, uses an
expression of the form

	(�; z) = Gn1;n2;m(z)Fn1;m(z; �): (5.3)

In the function F , the z dependence is treated parametrically, in a manner analogous to
the Born-Oppenheimer approximation in molecular physics. The function Gn1;n2;m(z) is

an eigenfunction of a Hamiltonian in which the potential is a function W
(adiab)
n1;m

(z) that is
calculated at each point as the eigenvalue of the � equation.
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Probably the most useful of the adiabatic approximations is the asymptotic approxi-
mation of R�osner, et al. [21]. Consider the case n1 = 0. (These are the most important

states, since eigenvalues for n1 > 0 in strong �elds lie above the ionization threshold.) The

integrand in Eq. (5.2) contains the product

�
(Landau)
0;m

�

�
(Landau)
0;m / e

�B�2=2
�
2jmj+1

; (5.4)

which is a bell-shaped curve peaked at the point �0 = [(2jmj + 1)=B]1=2. Replacing (�2 +
z
2)�1=2 in Eq. (5.2) with its asymptotic expansion about �0 and then retaining only the

leading term after evaluating the integral leads to the expression

V
(Landau)
p (z) � V

(asymp)
p = �2 (1=p + z

2)�1=2; (5.5)

p = B/(2jmj+ 1): (5.6)

The striking feature of Eq. (5.5) is the fact that it no longer depends on B and m sepa-

rately, but only on the quantity p. This reduction in the dimensionality of the manifold of
eigenvalues greatly facilitates the calculation of quantities such as partition functions that
require the computation of very large numbers of energy levels.

Figures 3 and 4 compare the accuracy of the SCF theory with that of the various adia-
batic approximations for states with (n1; n2) = (0; 0) and (0,2), respectively. For the (0,0)
manifold, the SCF results are in general signi�cantly more accurate than the primitive and

asymptotic adiabatic results, especially at lower �eld strengths. For the (0; 2) manifold the
trends are less clear. The primitive adiabatic, asymptotic adiabatic, and SCF results are

comparable in accuracy. The accuracy increases with jmj for all three methods but the
increase in general is greatest for the SCF method, especially at lower B.

True adiabatic results are available only for states with jmj = 0 or 1 [20]. Although
the true adiabatic theory is in principle the most accurate (and laborious) of the adiabatic
methods, it yields energies that are furthest from the exact results for m = 0.

It is interesting, also, that for states with n2 > 0 the primitive adiabatic theory is
generally less accurate than the asymptotic theory, despite the fact that the latter was
derived as an approximation to the former. In fact, it is possible to derive the asymptotic

theory from a semiclassical perturbation analysis, without invoking the adiabatic hypothesis.
Let us make the substitutions

E = �
�2 eE; B = �

�1 eB: (5.7)

Note that these di�er from the dimensional scalings in Eq. (2.4). The Schr�odinger equation

is now �
�

1

2
�
2

 
@
2

@�2
+

@
2

@z2

!
+
1� 2a� + (a2 � 1=4)�2

2�2

��
2(�2 + z

2)�1=2 +
1

8
eB2
�
2
�
eE�	 = 0; (5.8)

instead of Eq. (2.5). In the � ! 0 limit the Coulombic potential drops out and 	 concentrates

along the cylinder de�ned by � = �min, with �min = (2= eB)1=2. The scaled energy approaches
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the value eE0 = eB=2. If we introduce the displacement coordinate q1 = (�� �min)=�
1=2 and

expand Eq. (5.8) in powers of �1=2, keeping terms up to order �2, we obtain the uncoupled

equations �
�

�

2

d
2

dx2
+
1 � 2a� + (a2 � 1=4)�2

2(�min + �1=2x)2

+
1

8
eB2(�min + �

1=2
x)2 � eE(1)

�
 
(1)(x) = 0; (5.9)

�
�

�
2

2

d
2

dz2
� �

2(�min + z
2)�1=2 � eE(2)

�
 
(2)(z) = 0: (5.10)

To solve Eq. (5.9) we remove all of the dimensional scalings. The result is simply the Landau
equation, and

E
(1) = �

�2

�
1

2
e
B +

1

2
(2n1 + 1 � a) eB��

= (2n1 + jmj+ 1)(B=2) (5.11)

is the Landau energy. If the shift parameter a is chosen to be 1=2, then e
B=2 = p and the

potential in Eq. (5.10) is identical to V (asymp)
p in Eq. (5.5). In that case,  (2) is equivalent

to the function f0;n2;m as given by the asymptotic adiabatic approximation. Of course, the
value of a is arbitrary in the perturbation theory. One can justify the choice a = 1=2 by
requiring that the perturbation theory agree with the primitive adiabatic approximation in

the limit of large B and jmj.

VI. DISCUSSION

In general the asymptotic adiabatic approximation and the SCF theory for this system
appear to be complementary, in that the former is best for large values of the longitudinal
quantum number n2 and very large B while the SCF method is better for smaller n2 and

relatively smaller B. We have shown that the asymptotic method is in fact a type of second-

order semiclassical perturbation theory, and does not depend on an adiabatic hypothesis

for its validity. The advantage of the SCF approach is that it allows for very e�cient com-
putation of the perturbation expansion coe�cients. This eliminates the error that arises

from the need to truncate the asymptotic expansion at low order. However, it requires a

separability approximation that is based on the assumption that the dynamics of the system

is approximately harmonic. High excitation in the longitudinal or radial quantum numbers

increases the importance of anharmonic e�ects. In contrast, the asymptotic approxima-
tion does not assume that the dynamics in the longitudinal coordinate is harmonic. For

longitudinally excited states this advantage can outweigh the error from the second-order
asymptotic truncation.

Our derivation of the asymptotic adiabatic approximation uses dimensional perturba-

tion theory with an unconventional dimensional scaling. This illustrates the fact that the

dimensional continuation of the Schr�odinger equation is arbitrary as long as the Hamiltonian
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is correct for D = 3. The standard dimensional continuation [3,4,34], which we described
in Section II, is certainly the most widely used approach, but various other nonstandard

de�nitions for the D-dimensional Hamiltonian have been suggested [26,35{38]. Our use of

dimensional perturbation theory to explain the success of an adiabatic approximation is

somewhat analogous to Goscinski and Mujica's analysis of the hyperspherical adiabatic ap-

proximation for the two-electron atom [39]. It is possible that the particular approach we

have used here, in which part of the problem (in this case the z dependence of the potential)
is not expanded as a polynomial, will be useful in other contexts.

Both SCF and adiabatic approximations are widely used in molecular physics, and the

general experience in that �eld is that SCF theory is easier to apply than adiabatic approxi-
mations and the computational e�ort grows less quickly as the number of degrees of freedom

increases, but that an adiabatic calculation is more accurate than the corresponding SCF
calculation [40]. Thus, our �nding that the SCF theory is often the more accurate approach

is notable.

For the one-electron atom in an external �eld, approximate methods are not as impor-
tant as they were previously, since various methods can now yield essentially exact numerical

results on today's computers [7,22]. However, such accurate calculations, with no approxi-
mations, are much more di�cult for many-electron systems in strong �elds. It is straight-
forward to apply SCF theory, with dimensional perturbation expansions, to systems with
more than one electron [6] as long as a suitable de�nition for the dimensional continuation

of the Hamiltonian is available. For a two-electron atom in a magnetic �eld, the standard

dimensional continuation appears to be adequate. In Ref. [12] the exact dimensional expan-
sions for H� and He in a strong magnetic �eld were calculated to second order and found to

agree reasonably well with variational results.
Furthermore, even for systems for which the exact energy can be accurately calculated,

there is still a place for adiabatic and SCF calculations, which yield approximate results with
relatively little computational e�ort. Suppose, for example, that one wanted to calculate

the equilibrium constant for a chemical reaction involving simple atoms or molecules in
very strong magnetic �elds. Such a calculation could be of interest in the description of
astrophysical phenomena. In principle, the equilibrium constant could be calculated from

the partition functions obtained by summing over all quantum states of each of the reactants.
In practice, this requires the computation of tremendous numbers of eigenvalues [41].

SCF calculations for an atom in a magnetic �eld can also be carried out using an itera-

tive Hartree-Fock procedure [42,43]. Dimensional perturbation theory provides an e�cient
noniterative algorithm for solving SCF equations [6]. Furthermore, the normal coordinates

implied by the large-dimension limit are an asymptotically optimal coordinate system for
the separability assumption. For many-electron systems these coordinates yield a separable

model that includes electron-correlation e�ects [44,45]. The error due to this separabil-

ity assumption can be expected to be smaller than the error from an independent-electron
separability assumption.

Some particular advantages of dimensional perturbation theory are becoming clear. It
is in principle well suited to describing correlated electron dynamics [44{46] and provides a

uni�ed approach to bound states and resonances [11,12,27]. The method does not introduce
approximations into the potential energy operator, and therefore is relatively insensitive to

wide variations in physical parameters such as external �eld strengths. However, the com-
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putational cost of calculating the expansion coe�cients to su�ciently high order increases
prohibitively with the number of coupled degrees of freedom. SCF approximations o�er the

possibility of bypassing these computational di�culties without a severe cost in accuracy.
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FIGURES

FIG. 1. Energies for even parity states (n2 even), in scaled units, as function of �eld strength

for jmj = 30. g is the �eld-strength parameter given by Eq. (2.11). The scaled energy, �0, is given

by Eq. (4.3). Each curve is labeled by the quantum numbers n1 and n2.

FIG. 2. Accuracy of the SCF approximation for binding energies, as function of �eld strength for

the manifold of circular states, (n1; n2) = (0; 0). The ordinate is � log10 j(Eapprox�Eexact)=Eexactj.

The abscissa is the magnetic �eld strength in atomic units such that B = 1 corresponds to

2:35� 105 T. The curves are labeled by the value of the magnetic quantum number.

FIG. 3. Accuracy of binding energies calculated by various methods, as function of �eld strength

for the manifold of circular states, (n1; n2) = (0; 0). The axes are labeled as in Fig. 2. The

calculation methods are: SCF theory (solid curves); primitive adiabatic approximation [21] (dashed

curves); asymptotic adiabatic approximation [21] (dash-dot curves); true adiabatic approximation

[20] (�). The panels are labeled by the value of the magnetic quantum number.

FIG. 4. Accuracy of binding energies calculated by various methods, as function of �eld strength

for the manifold of states with (n1; n2) = (0; 2). The axes are labeled as in Fig. 2. The calculation

methods are: SCF theory (solid curves); primitive adiabatic approximation [21] (dashed curves);

asymptotic adiabatic approximation [21] (dash-dot curves); true adiabatic approximation [20] (�).

The panels are labeled by the value of the magnetic quantum number.
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