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ABSTRACT: A recently developed perturbation theory for solving self-consistent field
equations is applied to the hydrogen atom in a strong magnetic field. This system has
been extensively studied using other methods and is therefore a good test case for the
new method. The perturbation theory yields summable large-order expansions. The
accuracy of the self-consistent field approximation varies according to field strength and
quantum state but is often higher than the accuracy from adiabatic approximations. A
new derivation is presented for the asymptotic adiabatic approximation, the most useful
of the adiabatic approaches. This derivation uses semiclassical perturbation theory
without invoking an adiabatic hypothesis. Q 1998 John Wiley & Sons, Inc. Int J Quant Chem
69: 183]192, 1998
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I. Introduction

arge-order perturbation theory has beenL widely used to solve the Schrodinger equa-¨
tion for systems with only 1 or 2 degrees of free-
dom, and occasionally for 3-coordinate problems
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w x1]4 , but rarely for larger systems because it be-
comes increasingly difficult to compute expansion
coefficients to sufficiently high order. A recently

Ž .developed self-consistent field SCF perturbation
w xtheory 5, 6 reduces the computational cost by

introducing a separability assumption. Here we
apply this method to a simple two-coordinate test
case—the hydrogen atom in an external magnetic
field.

We will use this system, which has been exten-
w xsively studied with a wide variety of methods 7 ,

to examine the accuracy of the separability as-
sumption. In particular, we will compare the accu-
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racy of the SCF approximation to that of adiabatic
approximations. Our method is based on a semi-

w xclassical perturbation theory 8]13 . At first order
in this perturbation expansion the Schrodinger¨
equation becomes exactly separable in terms of a
set of normal coordinates. These coordinates are a
natural choice for a separability approximation.
For a one-electron atom in a magnetic field the
normal coordinates are the cylindrical coordinates
Ž .r, z , with z along the field direction. It is well
known that in the limit of infinite field strength
the exact wave function is a separable product in
these coordinates and that the z motion is much

w xslower than the r motion 14 . This is the rationale
w xbehind adiabatic approximations 14]21 , in which

a solution for the r motion is obtained with z
treated as a fixed parameter. These approxima-
tions simplify the computation of energies and
provide a qualitative understanding of the energy

w xlevel patterns 7, 21 . Approximate methods are
not as important for this problem as they used to
be now that increases in computer power have
made exact calculations feasible for any field

w xstrength 7, 22 . However, the asymptotic adiabatic
w xapproximation of Rosner et al. 21 is still useful¨

for calculating quantities such as partition func-
tions that require the computation of many energy
levels.

Adiabatic approximations and the SCF theory
are similar in that, in principle, they both become
exact in the infinite field limit. They differ in that
the SCF method includes no assumption about fast
and slow coordinates and uses a separable wave
function at all values of field strength. They differ
also in that the SCF perturbation theory becomes
exact not just in the limit of infinite field strength
but also in the limit of infinite magnetic quantum
number m. Thus, the error from the SCF separabil-
ity assumption can in principle remain small at
field strengths at which the adiabatic hypothesis
breaks down. We find in fact that the SCF results
for energies are accurate even at small values of m
and at relatively smaller field strengths.

Sections II and III describe our calculation
method and Section IV shows representative re-
sults. In Section V we compare the accuracy of the
SCF theory with that of the primitive adiabatic

w xapproximation of Schiff and Snyder 15 , the true
adabiatic approximation of Baldereschi and Bas-

w xsani 19 , and the asymptotic adiabatic approxima-
w xtion of Rosner et al. 21 . The asymptotic method¨

was originally derived as an approximation to the
primitive adiabatic method, yet it tends to be the

more accurate of these two approaches. We show
that the asymptotic method can be derived as a
second-order semiclassical perturbation expansion,
without assuming an adiabatic separation of vari-
ables. In Section VI we discuss our results and
describe some potential advantages of the SCF
theory.

II. Semiclassical Perturbation Theory

Mlodinow’s semiclassical perturbation expan-
w xsion 8 is an example of a class of perturbation

theories in which a discrete dimensionality param-
w xeter is treated as a continuous variable 23 . These

‘‘dimensional’’ perturbation theories are being ap-
plied to an increasingly wide variety of problems
in condensed-matter physics, statistical mechanics,
particle physics, polymer physics, and chemical

w xphysics 24 . In the case of the Schrodinger equa-¨
tion the perturbation expansion parameter is
asymptotically proportional to 1rD, where D is
the dimensionality of coordinate space. This ex-
pansion can often be computed to very large order

w xand accurately summed at D s 3 11]13, 25]29 .
The nonrelativistic energy levels, in atomic

units, of a hydrogen atom in a uniform magnetic
field B are E q mBr2, where m is the magnetic
quantum number and E is an eigenvalue of the
operator H s T q V,

1 ­ 2 ­ 2

T s y q2 2ž /2 ­r ­ z

Ž < < .Ž < < .2 m q D y 2 2 m q D y 4
Ž .q 2.128r

and

y1r2 12 2 2 2Ž . Ž .V s y r q z q B r . 2.28

In these units B s 1 corresponds to a field strength
of m2ce3r"3, which is approximately 2.35 = 105 T.e

Ž .The kinetic energy operator, Eq. 2.1 , is expressed
w xin a form valid for arbitrary D 30 . The coordi-

Ž .nates r, z are cylindrical coordinates with the z
axis oriented in the direction of B.

Let

y1w < < Ž . x Ž .d s m q a q D y 3 r2 , 2.3

where a is an arbitrary constant. We will use d as
the expansion parameter for the perturbation the-
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w xory 31 . The main purpose of the shift constant a
is to preserve d as a finite parameter at m s 0. The
dimensional scalings

r s dy2r , z s dy2 z ,˜ ˜ Ž .2.4
2 ˜ 3 ˜E s d E, B s d B ,

of the units of distance, energy, and field strength,
respectively, yield the eigenvalue equation

12 2 2 21 ­ ­ 1 y 2 ad q a y dŽ .42y d q q2 2 2ž /2 ­r ­ z 2 r˜ ˜ ˜

1y1r22 2 2 2˜ ˜Ž . Ž .y r q z q B r y E C s 0. 2.5˜ ˜ ˜
8

Ž .Note that the only D dependence in Eq. 2.5 is in
the parameter d . Therefore, we can set

Ž < < . Ž .d s 1r m q a 2.6

and consider d ª 0 as equivalent to the limit of
< <large m .

In the limit of small d the factor of d 2 plays the
role of "2 in the Schrodinger equation for a parti-¨
cle of unit mass subject to an effective potential:

y1r21 1y2 2 2 2 2˜Ž . Ž .V r , z s r y r q z q B r .˜ ˜ ˜ ˜ ˜ ˜eff 2 8

Ž .2.7

In the limit d ª 0 all of the eigenvalues collapse to
˜ Ž . Ž .the value E s V r , z , where r , z˜ ˜ ˜ ˜0 eff min min min min

is the minimum of the effective potential. This
minimum corresponds to z s 0 with r˜ ˜min min

˜2 4equal to a positive root of the equation B r sm̃in
Ž .4 1 y r .m̃in

In order to have a formulation suitable for the
entire range of field strengths, we introduce a
further scaling of distance and energy with the
substitutions

Ž .j s rrr , h s zrr , 2.8˜ ˜ ˜ ˜min min

which yields the effective potential

1 1 y g 1
2Ž . Ž .W j , h s y q gj , 2.92 1r22 2 22j Ž .j q h

where

˜2 4 Ž .g s 1 y r s B r r4. 2.10˜ ˜min min

Variation of g from 0 to 1 corresponds to variation
˜of B from zero to infinity, according to the relation

y21r2˜ Ž . Ž .B s 2 g 1 y g . 2.11

Higher orders in the perturbation theory are
obtained by introducing displacement coordinates
q and q , defined by j s 1 q d 1r2q , h s d 1r2q ,1 2 1 2
and then expanding W in powers of d 1r2, and

Ž 1r2 .2collecting terms of given order. At order d
we have a Schrodinger equation for a harmonic¨
oscillator. In general, the next step in the analysis
would be to diagonalize the harmonic Hamilto-
nian with a normal-mode transformation. How-
ever, in this case there is no coupling between q1
and q at this order. Therefore, q and q are2 1 2
themselves the normal coordinates. The Schro-¨
dinger equation is

2 2d ­ ­
2 ˜ Ž .y q q W y r E C s 0 2.12m̃in2 2ž /2 ­ q ­ q1 1

and the perturbation expansions for the effective
potential, the wave function, and the scaled eigen-
values, respectively, have the forms

1 12 2 2 2 2˜ Ž .W s r E q d v q q v q y a q v q , q ,m̃in 0 1 1 2 2 1 22 2

Ž .2.13
`

k r2Ž . Ž . Ž .v q , q s d v q , q , 2.14Ý1 2 k 1 2
ks1

`
k r2Ž . Ž . Ž .C q , q s d C q , q , 2.15Ý1 2 k 1 2

ks0

2 `˜ ˜r E y E˜ ž /min 0 k r2 Ž .e ' s d e . 2.16Ý kd ks0

Ž .The v in Eq. 2.14 are polynomials of degreek
k q 2, and e s 0 for odd k.k

At first order in d the expansion coefficient for
the eigenvalue is

Ž1. Ž2. Ž .e s e q e y a, 2.170 0 0

in terms of the harmonic eigenvalues

1Ž i. Ž . Ž .e s n q v 2.180 i i2

with harmonic frequencies

1r2 1r2Ž . Ž . Ž .v s 1 q 3g , v s 1 y g . 2.191 2
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III. Self-Consistent Field Theory

Let us express the wave function as a separable
product in terms of the normal coordinates,

Ž . Ž1. Ž . Ž2. Ž . Ž .C q , q s c q c q . 3.11 2 1 2

The SCF equations are

21 d 1
2 2 Ž i. Ž i.Ž . Ž .y q v q q v q y e c q s 0,i i i i i22 2dqi

Ž .3.2

where i s 1 or 2, and

Ž i. Ž j. Ž j.Ž . ² Ž . < Ž . < Ž .: Ž .v q s c q v q , q c q , 3.3qi j 1 2 j j

Ž . Ž . Ž . Ž .with i, j s 1, 2 or 2, 1 . Equation 3.2 yields
the ‘‘best’’ solutions for the c Ž i. according to the
variational principle for the energy. The SCF ap-
proximation for the total energy can be calculated
as

Ž1. Ž2. Ž2. Ž2. Ž2.² Ž . < Ž . < Ž .:e s e q e y c q v q c q .q2 2 2 2

Ž .3.4

Let

`
Ž i. k r2 Ž i.Ž . Ž . Ž .c q s d c q 3.5Ýi k i

ks0

and

`
Ž i. k r2 Ž i. Ž .e s d e . 3.6Ý k

ks0

Substituting these expansions into the two SCF
equations and collecting terms by order in d 1r2

yields two sets of perturbation equations that are
Ž i.coupled implicitly through the dependence of v

on c Ž j..
Ž i.Ž .Consider the expansion of v q at some arbi-i

k r2 Ž .trary order d . Substituting Eq. 2.14 for v and
Ž . Ž j. Ž .Eq. 3.5 for c into Eq. 3.3 yields a sum of the

Ž Ž j. < < Ž j.:terms c v c such that k q k q k s k.k k k 1 2 31 2 2

However, the smallest possible value of k is 1,2
which implies that the largest possible value for k1
or k is k y 1. Therefore, the equation that deter-3

mines c Ž i. depends on the c Ž j. only for k9 - k.k k 9

Thus, perturbation theory uncouples the SCF

equations order by order. Detailed derivations of
the perturbation equations are presented in Refs.
w x w x5 and 6 .

By assuming separability in terms of the normal
coordinates, we ensure that the SCF theory will
be exact to order d in the energy expansion. The
error due to the separability assumption will be of
order d 2.

IV. Results

The SCF energy levels can be uniquely labeled
by the magnetic quantum numbers m and by the

Ž .harmonic quantum numbers n , n . The expres-1 2
sion for the eigenvalue E is

y2 y3 y2˜Ž < < . Ž < < . Ž .E s m q a E q m q a r e , 4.1˜0 min

where a is the arbitrary shift parameter; e is calcu-
lated as an asymptotic expansion. In general, we
choose

Ž .a s n q n q 1, 4.21 2

so that in the limit B ª 0 the zeroth-order term in
Ž .Eq. 4.1 yields the exact hydrogenic energy.

Ž .For the exact nonseparable problem, n , n are1 2
˜true quantum numbers only in the limit B ª `.

˜ Ž . Ž .As B is decreased, all but the 0, 0 and 1, 0 states
˜will undergo avoided crossings, which occur at B

values for which the harmonic frequencies are in
integer ratios. At very high field strengths the
avoided crossings are sharp and well defined while
at lower field strengths they can be broad and

w xcomplicated 32 .
One can expect that the major qualitative differ-

ence between the SCF eigenvalues and the exact
eigenvalues will be the behavior at avoided cross-
ings. The separability assumption ensures that for

Ž .the SCF results n , n will be good quantum1 2
˜numbers for all values of B. Thus, the SCF eigen-

values will cross diabatically. Figure 1 compares
exact and SCF results as functions of the parameter

< < wg for a manifold of states with m s 30 g s 0
˜corresponds to B s 0 and g s 1 corresponds to

˜ Ž .xB s `, according to Eq. 2.10 . This figure gives
the energy as the scaled quantity

3 y22 ˜< < < < Ž . Ž .e 9 s m r E y m E a s 0 , 4.3m̃in 0
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( )FIGURE 1. Exact energies dashed curves and
( )energies from SCF theory solid curves for even parity

( )states n even , in scaled units, as function of field2
< <strength for m = 30. g is the field strength parameter
( )given by Eq. 2.11 . The scaled energy, e 9, is given by

( )Eq. 4.3 . Each curve is labeled by the quantum numbers
n and n .1 2

which is simply the value of e that corresponds to
a s 0. The advantage of e 9 is that it omits the
uninteresting but strongly field-dependent zero-
point energy and, in contrast to e , it uses the same
scaling factor for all values of n and n . We1 2
obtain convergent SCF results for e over almost
the full range of g using Pade summation. It can´
be seen that the SCF results are very close to the
exact results except in the vicinity of broad avoided
crossings.

Figure 2 shows the accuracy of the SCF approxi-
Žmation for the binding energy the difference be-

tween the total energy and the energy of a free
.electron in the magnetic field in unscaled units as

a function of B and m for the ‘‘circular’’ states,

FIGURE 2. Accuracy of the SCF approximation for
binding energies, as function of field strength for the

( ) ( )manifold of circular states, n , n = 0, 0 . The ordinate1 2
<( ) <is ylog E y E / E . The abscissa is the10 approx exact exact

magnetic field strength in atomic units such that B = 1
corresponds to 2.35 = 105 T. The curves are labeled by
the value of the magnetic quantum number.

Ž . Ž .n , n s 0, 0 . For given value of B the accuracy1 2
< <increases significantly with increasing m . This is

consistent with the fact that the underlying separa-
bility assumption is exact within first-order pertur-

< <y1bation theory in d ; m .
< <For given m , the error from the SCF approxi-

mation at first holds steady at the field-free value
as B increases. Note that the field-free H atom is
not separable in the coordinates r and z. Then at a
critical value of B, the accuracy begins to improve,
with the error diminishing approximately as By1r2.
The increase in accuracy begins when the field-

˜2 2dependent term B r r8 starts to dominate the˜
Ž 2 2 .y1r2 Ž .coupling term y r q z in Eq. 2.5 . The˜ ˜

< <critical value is smaller at large m , since B s
y3 ˜Ž < < .m q a B. At this critical field strength the

magnetic field and the Coulomb field on the elec-
tron are of the same magnitude, since the radius of

< < Ž < < .2the electron orbit increases with m as m q a .
We have used Pade approximants to sum the´

perturbation expansions. For the results from
which Figure 2 was prepared, the approximants
converge with a precision that is greater than the
accuracy of the underlying separability assump-
tion. The rate of convergence slows as B increases.
This appears to be due to the fact that r ap-m̃in
proaches zero in the large-B limit, which causes

Ž .the expansion of the Coulomb term in Eq. 2.7 to
diverge.
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V. Comparison with Adiabatic
Approximations

There are three different computational tech-
niques that have been referred to in the literature
as ‘‘adiabatic approximations’’ for the one-electron
atom in a magnetic field. The earliest is the method

w xdeveloped by Schiff and Snyder 15 , which we
will call the ‘‘primitive’’ adiabatic approximation.
That approach is based on the approximation

Ž . Ž . ŽLandau. Ž . Ž .C r , z s f z F r , 5.1n , n , m n , m1 2 1

where the FŽLandau. are the well-known Landaun , m1

w xfunctions 14 , which result from solving the
Schrodinger equation without the Coulomb poten-¨
tial. The Landau quantum number n is equivalent1

to our harmonic quantum number for r motion in
the limit d ª 0, while the quantum number n ,2

which is equal to the number of longitudinal nodes,
is equivalent to our harmonic quantum number
for z motion. The longitudinal functions f are
determined by solving Schrodinger equations with¨
effective potentials

ŽLandau. Ž .V zn , m1

y1r2ŽLandau. 2 2 ŽLandau.² <Ž . < : Ž .s y F r q z F . 5.2n , m n , m1 1

w xThe second approach 19, 20 , which we call the
‘‘true’’ adiabatic approximation, uses an expres-
sion of the form

Ž . Ž . Ž . Ž .C r , z s G z F z ; r . 5.3n , n , m n , m1 2 1

In the function F, the z dependence is treated
parametrically, in a manner analogous to the
Born]Oppenheimer approximation in molecular

Ž .physics. The function G z is an eigenfunc-n , n , m1 2

tion of a Hamiltonian in which the potential is a
Žadiab.Ž .function W z that is calculated at each pointn , m1

as the eigenvalue of the r equation.
Probably the most useful of the adiabatic ap-

proximations is the asymptotic approximation of
w x ŽRosner et al. 21 . Consider the case n s 0. These¨ 1

are the most important states, since eigenvalues
for n ) 0 in strong fields lie above the ionization1

. Ž .threshold. The integrand in Eq. 5.2 contains the

product

ŽLandau.* ŽLandau. yBr 2r2 2 < m <q1 Ž .F F A e r , 5.40, m 0, m

which is a bell-shaped curve peaked at the point
wŽ < < . x1r2 Ž 2 2 .y1r2r s 2 m q 1 rB . Replacing r q z in0
Ž .Eq. 5.2 with its asymptotic expansion about r0

and then retaining only the leading term after
evaluating the integral leads to the expression

y1r2ŽLandau. Žasymp. 2Ž . Ž .V z ; V s y2 1rp q z ,p p

Ž .5.5

Ž < < . Ž .p s Br 2 m q 1 . 5.6

Ž .The striking feature of Eq. 5.5 is the fact that it no
longer depends on B and m separately, but only
on the quantity p. This reduction in the dimen-
sionality of the manifold of eigenvalues greatly
facilitates the calculation of quantities such as par-
tition functions that require the computation of
very large numbers of energy levels.

Figures 3 and 4 compare the accuracy of the
SCF theory with that of the various adiabatic ap-

Ž . Ž .proximations for states with n , n s 0, 0 and1 2
Ž . Ž .0, 2 , respectively. For the 0, 0 manifold, the SCF
results are in general significantly more accurate
than the primitive and asymptotic adiabatic re-
sults, especially at lower field strengths. For the
Ž .0, 2 manifold the trends are less clear. The primi-
tive adiabatic, asymptotic adiabatic, and SCF re-
sults are comparable in accuracy. The accuracy

< <increases with m for all three methods, but the
increase in general is greatest for the SCF method,
especially at lower B.

True adiabatic results are available only for
< < w xstates with m s 0 or 1 20 . Although the true

adiabatic theory is in principle the most accurate
Ž .and laborious of the adiabatic methods, it yields
energies that are furthest from the exact results for
m s 0.

It is interesting, also, that for states with n ) 02
the primitive adiabatic theory is generally less ac-
curate than the asymptotic theory, despite the fact
that the latter was derived as an approximation to
the former. In fact, it is possible to derive the
asymptotic theory from a semiclassical perturba-
tion analysis, without invoking the adiabatic hy-
pothesis. Let us make the substitutions

y2 ˜ y1 ˜ Ž .E s d E, B s d B. 5.7
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FIGURE 3. Accuracy of binding energies calculated by
various methods, as function of field strength for the

( ) ( )manifold of circular states, n , n = 0, 0 . The axes are1 2
labeled as in Figure 2. The calculation methods are: SCF

( )theory solid curves ; primitive adiabatic approximation
[ ] ( )21 dashed curves ; asymptotic adiabatic

[ ] ( )approximation 21 dash ]dot curves ; true adiabatic
[ ] ( )approximation 20 v . The panels are labeled by the

value of the magnetic quantum number.

Note that these differ from the dimensional scal-
Ž .ings in Eq. 2.4 . The Schrodinger equation is now¨

12 2 2 21 ­ ­ 1 y 2 ad q a y dŽ .42y d q q2 2 2ž /2 ­r ­ z 2 r

1y1r22 2 2 2 2˜ ˜Ž .yd r q z q B r y E C s 0,
8

Ž .5.8

Ž .instead of Eq. 2.5 . In the d ª 0 limit the Coulom-
bic potential drops out and C concentrates along
the cylinder defined by r s r , with r smin min

˜ 1r2Ž .2rB . The scaled energy approaches the value
˜ ˜E s Br2. If we introduce the displacement coor-0

FIGURE 4. Accuracy of binding energies calculated by
various methods, as function of field strength for the

( ) ( )manifold of states with n , n = 0, 2 . The axes are1 2
labeled as in Figure 2. The calculation methods are: SCF

( )theory solid curves ; primitive adiabatic approximation
[ ] ( )21 dashed curves ; asymptotic adiabatic

[ ] ( )approximation 21 dash ]dot curves ; true adiabatic
[ ] ( )approximation 20 v . The panels are labeled by the

value of the magnetic quantum number.

Ž . 1r2 Ž .dinate q s r y r rd and expand Eq. 5.81 min
in powers of d 1r2, keeping terms up to order d 2,
we obtain the uncoupled equations

12 2 2d d 1 y 2 ad q a y dŽ .4y q2 21r22 dx Ž .2 r q d xmin

1 22 1r2 Ž1. Ž1.˜ ˜Ž . Ž .q B r q d x y E c x s 0,min8

Ž .5.9
2 2d d y1r22 2 Ž2. Ž2.˜Ž . Ž .y yd r qz yE c z s0.min22 dz

Ž .5.10
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Ž .To solve Eq. 5.9 we remove all of the dimensional
scalings. The result is simply the Landau equation,
and

1 1Ž1. y2 ˜ ˜Ž .E s d B q 2n q 1 y a Bd12 2

Ž < < .Ž . Ž .s 2n q m q 1 Br2 5.111

is the Landau energy. If the shift parameter a is
1 ˜chosen to be , then Br2 s p and the potential in2

Ž . Žasymp. Ž .Eq. 5.10 is identical to V in Eq. 5.5 . In thatp
case, c Ž2. is equivalent to the function f as0, n , m2

given by the asymptotic adiabatic approximation.
Of course, the value of a is arbitrary in the pertur-

1bation theory. One can justify the choice a s by2

requiring that the perturbation theory agree with
the primitive adiabatic approximation in the limit

< <of large B and m .

VI. Discussion

In general the asymptotic adiabatic approxima-
tion and the SCF theory for this system appear to
be complementary in that the former is best for
large values of the longitudinal quantum number
n and very large B while the SCF method is2
better for smaller n and relatively smaller B. We2
have shown that the asymptotic method is in fact a
type of second-order semiclassical perturbation
theory and does not depend on an adiabatic hy-
pothesis for its validity. The advantage of the SCF
approach is that it allows for very efficient compu-
tation of the perturbation expansion coefficients.
This eliminates the error that arises from the need
to truncate the asymptotic expansion at low order.
However, it requires a separability approximation
that is based on the assumption that the dynamics
of the system is approximately harmonic. High
excitation in the longitudinal or radial quantum
numbers increases the importance of anharmonic
coupling effects.

Our derivation of the asymptotic adiabatic ap-
proximation uses dimensional perturbation theory
with an unconventional dimensional scaling. This
illustrates the fact that the dimensional continua-
tion of the Schrodinger equation is arbitrary as¨
long as the Hamiltonian is correct for D s 3. The

w xstandard dimensional continuation 3, 4, 33 , which
we described in Section II, is certainly the most
widely used approach, but various other nonstan-
dard definitions for the D-dimensional Hamilto-

w xnian have been suggested 26, 34]37 . Our use of
dimensional perturbation theory to explain the
success of an adiabatic approximation is somewhat
analogous to Goscinski and Mujica’s analysis of
the hyperspherical adiabatic approximation for the

w xtwo-electron atom 38 . It is possible that the par-
ticular approach we have used here, in which part

Žof the problem in this case the z dependence of
.the potential is not expanded as a polynomial,

will be useful in other contexts.
Both SCF and adiabatic approximations are

widely used in molecular physics, and the general
experience in that field is that SCF theory is easier
to apply than adiabatic approximations and the
computational effort grows less quickly as the
number of degrees of freedom increases, but that
an adiabatic calculation is more accurate than the

w xcorresponding SCF calculation 39 . Thus, our find-
ing that the SCF theory is often the more accurate
approach is notable.

For the one-electron atom in an external field,
approximate methods are not as important as they
were previously, since various methods can now
yield essentially exact numerical results on today’s

w xcomputers 7, 22 . However, such accurate calcula-
tions, with no approximations, are much more
difficult for many-electron systems in strong fields.
It is straightforward to apply SCF theory, with
dimensional perturbation expansions, to systems

w xwith more than one electron 6 as long as a
suitable definition for the dimensional continua-
tion of the Hamiltonian is available. For a two-
electron atom in a magnetic field, the standard
dimensional continuation appears to be adequate.

w xIn Ref. 12 the exact dimensional expansions for
Hy and He in a strong magnetic field were calcu-
lated to second order and found to agree reason-
ably well with variational results.

Furthermore, even for systems for which the
exact energy can be accurately calculated, there is
still a place for adiabatic and SCF calculations,
which yield approximate results with relatively
little computational effort. Suppose, for example,
that one wanted to calculate the equilibrium con-
stant for a chemical reaction involving simple
atoms or molecules in very strong magnetic fields.
Such a calculation could be of interest in the de-
scription of astrophysical phenomena. In principle,
the equilibrium constant could be calculated from
the partition functions obtained by summing over
all quantum states of each of the reactants. In
practice, this requires the computation of tremen-

w xdous numbers of eigenvalues 40 .
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SCF calculations for an atom in a magnetic
field can also be carried out using an iterative

w xHartree]Fock procedure 41, 42 . Dimensional per-
turbation theory provides an efficient noniterative

w xalgorithm for solving SCF equations 6 . Further-
more, the normal coordinates implied by the
large-dimension limit are an asymptotically opti-
mal coordinate system for the separability
assumption. For many-electron systems these coor-
dinates yield a separable model that includes

w xelectron-correlation effects 43, 44 . The error due
to this separability assumption can be expected to
be smaller than the error from an independent-
electron separability assumption.

Some particular advantages of dimensional per-
turbation theory are becoming clear. It is in princi-
ple well suited to describing correlated electron

w xdynamics 43]45 and provides a unified approach
w xto bound states and resonances 11, 12, 27 . The

method does not introduce approximations into
the potential energy operator, and therefore is rela-
tively insensitive to wide variations in physical
parameters such as external field strengths. How-
ever, the computational cost of calculating the ex-
pansion coefficients to sufficiently high order in-
creases prohibitively with the number of coupled
degrees of freedom. SCF approximations offer the
possibility of bypassing these computational diffi-
culties without severe cost in accuracy.
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