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Summation of the eigenvalue perturbation series by multi-

valued Padé approximants: application to resonance problems

and double wells

A. V. Sergeev

Abstract. Quadratic Padé approximants are used to obtain energy

levels both for the anharmonic oscillator x x2 42/ − λ  and for the

double well − +x x2 42/ λ . In the first case, the complex-valued

energy of the resonances is reproduced by summation of the real

terms of the perturbation series. The second case is treated

formally as an anharmonic oscillator with a purely imaginary

frequency. We use the expansion around the central maximum of

the potential to obtain complex perturbation series on the

unphysical sheet of the energy function. Then, we perform analytic

continuation of this solution to the neighbor physical sheet taking

into account the supplementary branch of quadratic approximants.

In this way we can reconstruct the real energy by summation of

the complex series. Such unusual approach eliminates double

degeneracy of states that makes the ordinary perturbation theory

(around the minima of the double well potential) to be incorrect.



3

Text

Summation of the eigenvalue perturbation series by multi-

valued Padé approximants: application to resonance problems

and double wells

A. V. Sergeev

As a rule, perturbation series for energy levels in quantum

mechanics have a zero radius of convergence. So, generalized

summation methods that enable one to continue Taylor series

outside of its circle of convergence are commonly used. The

classical example is the divergence of the perturbation series for

the anharmonic oscillator (Bender and Wu 1973) and summability

of this series by Padé approximants (Loeffel et al 1969).

In general, the energy levels represent the sheets of some

multi-valued analytic function. The natural generalization of the

ordinary Padé approximants to the case of multi-valued functions

is a quadratic Padé approximant (QPA) introduced by Shafer

(1974). The "diagonal" QPA to the function f(z) is defined as a

double-valued solution of a quadratic equation,

f z A B B ACN N N[ , , ]
/( ) ( ) [ ( ) ]= − ± −−2 41 2 1 2 , (1)

where A, B and  C are polynomials of degree N, which satisfy

A z f z B z f z C z o z N( ) ( ) ( ) ( ) ( ) ( )2 3 1+ + = + (2)
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Thus, f zN N N[ , , ]( ) can be computed from the first 3N+2 terms of the

Taylor expansion for f(z).

This type of approximant is a special case of generalized Padé

- Hermite approximant extensively studied by Della Dora and Di-

Crescenzo (1979). The coefficients of Padé  - Hermite polynomials

are determined by solving the system of linear algebraic equations.

Together with QPA, Common (1982) considered "integral" and

"differential" Padé - Hermite approximants also having branch-

point structure.

The main branch of QPA regenerates the Taylor expansion for

the initial function up to the order z N3 1+ . It transfers to the second

sheet at square root branch points where the discriminant becomes

zero. So, QPA can approximate both poles and cuts. Moreover, it

can reconstruct at some extent the neighbor sheets of the multi-

valued function. Numerical results of Short (1979) indicate that

QPA provides a practical method for the analytic continuation of a

function from one Riemann sheet to another.

In the first part of the paper, we apply the QPA to the

function, having a cut on the positive real axis. This is the case

when the ordinary Padé approximants fail to converge because of

an accumulation of poles on the cut (Baker 1975). The function to

be approximated is a complex energy of resonances,

E E ir= ± Γ /2, the plus sign corresponding to the incoming

wave, and the minus sign corresponding to the outgoing wave

boundary conditions. The real part Er defines a position of the

level, and Γ  is its width. The present approach is not quite new.

Earlier, QPA were applied to the quasistationary states in Yukawa

potential (Sergeev and Sherstyuk 1984) and for a Stark effect in a
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hydrogen atom (Vainberg et al 1987). More ingenious summation

procedures such as modification of Padé approximants (Reinhardt

1982) and Padé - Borel method (Franceschini et al 1985) were

also considered for a Stark effect.

Here, we illustrate the convergence of QPA for the oscillator

with negative quartic anharmonicity,

V x x x( ) /= −2 42 λ . (3)

The expansion for the energy

E n n n( ) ( )λ λ= + − + +1
2

3
4
2 2 12

− + + + −1
8
34 51 59 213 2 2( ) ...n n n λ , (4)

where n is a quantum number, can be easily computed up to higher

orders. To calculate "diagonal" QPA, we use a fast algorithm based

on a four-term recurrence relation (Mayer and Tong 1985, Sergeev

1986) and resembling the method of continued fractions for

diagonal Padé sequence. Two values of QPA prove to be complex-

conjugate unless the parameter λ is too small. We present the

values of QPA in the Table 1, retaining only the stabile digits

which are common for three approximants [12,12,12], [13,13,13]

and [14,14,14]. Our results appear slightly more accurate than the

earlier numerical results of Drummond (1982) which are also

given in the Table 1.

Further, we note that the problem in question can be

converted into a problem with potential

U x g x x( ) ( / )= −2 42 (5)
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Table 1. The doubled energy of resonances 2E (to make easier the

comparison with previous results) obtained by summation of the

perturbation series for a potential x x2 42/ − λ  by QPA.

________________________________________________
Ground state, n = 0 First excited state,

n = 1

λ Real Imaginary Real Imaginary
____________________________________________________

0.01 0.98442767 0.0000000 2.92028216 0.000000

0.02 0.96745124 0.00000060 2.82710262 0.00008903
0.96745124a 0.00000060a

0.05 0.90067290 0.00669328 2.448334 0.153195
0.90067a 0.00669a

0.1 0.794881 0.089412 2.19290 0.67732
0.7949a 0.0894a

0.2 0.72882 0.27735 2.1652 1.3905
0.7288a 0.2773a

0.5 0.7477 0.6100 2.41 2.51
0.7477a 0.6100a

1.0 0.8297 0.9097 2.78 3.53

2.0 0.964 1.260 3.3 4.73

5.0 1.23 1.84 4.3 6.8
________________________________________________

a The results obtained by Runge - Kutta integrations (Drummond
1982).
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