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Abstract. The variational principle for eigenvalue problems with a nonidentity weight operator
is used to establish upper or lower bounds on critical parameters of quantum systems. Three
problems from atomic physics are considered as examples. Critical screening parameters for the
exponentially screened Coulomb potential are found using a trial function with one nonlinear
variational parameter. The critical charge for the helium isoelectronic series is found using a
Hylleraas-type trial function. Finally, critical charges for the same system subjected to a magnetic
field are found using a product of two hydrogen-like basis sets.

1. Introduction

The variational principle for eigenvalue problems is a well known method and has been widely
used in quantum calculations since the foundation of quantum mechanics. For the eigenvalue
equation of the form

L(ψ) = λM(ψ) (1)

whereL andM are self-adjoint semi-bounded operators, the variational principle reads (Morse
and Feshbach 1953):

δ[λ] = δ
[ ∫

ψL(ψ) dV

/∫
ψM(ψ) dV

]
= 0. (2)

For a time-independent Schrödinger equation,M andλ are usually considered as the identity
operator and the energy, in this case equation (2) represents the variational principle for the
energy. Here, we point out the usefulness of the variational principle with a non-identity
‘weight’ operator,M, for calculations of critical parameters of quantum mechanical systems.

We consider a HamiltonianH(γ ) that depends on some continuous parameter. We call the
parameterγ = γc critical if the energy eigenvalue passes the border of the continuum spectrum
EI (γ ). For example, the border of the continuum spectrum is zero energy for one particle in
a finite-range potential, and it is the energy of the positive ion for an atom. If the Hamiltonian
and the border of the continuum depend linearly on the parameterγ , i.e.H(γ ) = H0 +H1γ ,
EI (γ ) = E0 +E1γ , then the Schr̈odinger equation for the critical parameter,

H(γc)ψ = EI (γc)ψ (3)

takes the form of equation (1) whereL = H0 − E0, M = E1 − H1, andλ = γc, in which
case the variational principle can be used immediately. Often, a linear dependence onγ can
be achieved by an appropriate scaling transformation before using the variational principle.
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A similar approach was used previously for critical screening parameters of the
exponentially screened (Hulthén and Laurikainen 1951) and of the cut-off (Duttet al 1985)
Coulomb potentials. Here we present a further demonstration of the power of the general
variational principle, equation (2), to obtain very accurate critical parameters for both simple
one-degree-of-freedom problems such as the Yukawa potential and for problems of several
degrees of freedom such as two-electron atoms in a magnetic field. To the best of our
knowledge, this general variational principle is used here for the first time to calculate critical
parameters for several degrees of freedom. Let us consider several examples to illustrate this
approach.

2. Yukawa potential

Thoughout the present paper we use atomic units ¯h = e = m = 1. The radial Schr̈odinger
equation for one particle in a Yukawa potential,v(r) = −exp(−δr)/r, after the scaling
transformationr → r/δ, takes the form[

−1

2

d2

dr2
+
l(l + 1)

2r2
− δ−1 exp(−r)

r
− δ−2E

]
P(r) = 0 (4)

wherel is the azimuthal quantum number,δ the screening parameter,E the energy, andP(r)
the radial wavefunction multiplied byr. For a sufficiently large critical screening parameter
δ = δc the energy reaches the ionization borderEI = 0.

Since bothδ−2E and δ−1 enter equation (4) linearly, each of these quantities can be
determined by the variational method if another one is known in advance. Minimizing the
energy is a common use of the variational method in which caseL is equal to the Hamiltonian
andM = 1. Since for calculating critical parameters the energy is known in advance
(E = 0) andδ is a variable to be found, here we minimize the quantityλ = δ−1

c by choosing
L = − 1

2
d2

dr2 + l(l+1)
2r2 andM = exp(−r)/r, i.e. the Yukawa part of the Hamiltonian (4) is shifted

to the rhs.
We are looking for an extremum of the functional

W =
∫
ψL(ψ) dr

/∫
ψM(ψ) dr (5)

using a trial function with only one variational parameterα:

P̃ (r) = r−l
(

1− e−αr
2l∑
n=0

αn

n!
rn
)
. (6)

The function, equation (6), behaves likẽP(r) ∼ rl+1 at r → 0 andP̃ (r) ∼ r−l at r → ∞
which is consistent with the behaviour of the general solution of the radial Schrödinger equation
at zero energy.

The functional, equation (5), appears to have a minimum at a certainα = αmin, these
values are listed in table 1 for different values ofl. Its minimum gives an approximation for the
eigenvaluẽλ. The corresponding approximations for the critical screening parameterδ̃c = λ̃−1

together with the exact critical screening parameters, which have been found numerically by
integration of the Schrödinger equation, are listed in the last two columns of table 1. The
variational method yields excellent lower bounds for the critical screening parameters of the
lowest states in each subspacel.

Hulthén and Laurikainen (1951) used the variational method for the equivalent equation
(d2φ/dx2)+[a+b(e−x/x)]φ = 0 witha treated as the known parameter andb as the eigenvalue.
Since their zero-energy trial function(1− e−x)

∑n
ν=0 hνe

−νx is more elaborate than our trial
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Table 1. Results of minimization of the functional, equation (5), for the Yukawa potential with
a one-parameter trial function, equation (6). The exact critical parameters are given in the last
column for comparison.

l αmin δ̃c δc

0 1.535 1.190 213 1.190 612
1.190 524a

1.190 580a

1.190 604a

1 2.534 0.219 800 0.220 217
2 3.525 0.091 085 0.091 345
3 4.517 0.049 670 0.049 831
4 5.513 0.031 240 0.031 344
5 6.510 0.021 455 0.021 525
6 7.507 0.015 642 0.015 691
7 8.506 0.011 909 0.011 945

a Variational results of Hulth́en and Laurikainen (1951) for the trial function with one, two and
three effective parameters (n = 1, 2 and 3).

function 1−e−αx (equation (6) atl = 0), their variational results (displayed in terms ofδ = 2/b
in table 1) are more accurate.

3. Two-electron atoms

The minimum nuclear chargeZ for which the given state of an atom remains a bound state is
called the critical chargeZc.

The calculation ofZc for two-electron atoms has a long history (Brändas and Goscinski
1972, Stillinger 1966, Stillinger and Stillinger 1974, Stillinger and Weber 1974, Reinhardt
1977) with controversial results of whether or not the value ofZ−1

c is the same as the
radius of convergence of the perturbation series in 1/Z, Z−1

∗ . Baker et al (1990) have
performed a 400-order perturbation calculation to resolve this controversy and found that
Z∗ = Zc where numericallyZ−1

∗ ≈ 1.097 66. Using the Euler transformation of the series to
accelerate its convergence, Ivanov (1995) estimated the value of the radius of convergence as
Z−1
∗ ≈ 1.097 660 79.

The Schr̈odinger equation for a two-electron atom, after the scaling transformation
r → r/Z, takes the form[

−1

2
∇2

1 −
1

2
∇2

2 −
1

r1
− 1

r2
+Z−1 1

r12
− Z−2E

]
ψ = 0 (7)

whereZ is the charge of the nucleus andE is the energy (in atomic units). For a sufficiently
small nuclear charge, atZ = Zc the energy reaches the ionization borderEI = −Z2/2, which
is the energy of a one-electron atom. The equation forZc has the form of a general eigenvalue
equation (1) in whichL = − 1

2∇2
1 − 1

2∇2
2 − 1/r1 − 1/r2 + 1

2, M = 1/r12, andλ = −Z−1
c .

We are looking for an extremum of the functional, equation (5), using a Hylleraas-type trial
function of the form

ψN =
∑

i+j2+k26N
Ci,j,k[r

i
1r
j

2 exp(−ar1− br2) + ri2r
j

1 exp(−ar2 − br1)] exp(−cr12)r
k
12. (8)

The restriction on the summation indicesi + j2 + k2 6 N is used instead of the more common
restrictioni + j + k 6 N in order to decrease the number of terms in the sum from∼ 1

6N
3

to∼π
8N

2 . Here, we suppose that correlation terms with higher degrees ofr12 are relatively
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Table 2. Nonlinear parameters of the Hylleraas-type trial function, equation (8).

a b c

1s2 1S 0.35 1.03 0.03
2p2 3P 0.12 0.5 0

Table 3. The inverse of the critical charge found by minimization of the functional, equation (5),
using Hylleraas-type functions, equation (8), with fixed exponents which are listed in table 2. The
problem reduces to the calculation of the lowest eigenvalue of the matrix whose size increases by
∼ π8N2. This matrix is computed using a multiple-precision arithmetic to avoid round-off errors.
Extrapolation toN →∞ is done by Shanks transformation (Bender and Orszag 1978).

N 1s2 1S 2p2 3P

0 1.007 284 224 0.968 400 90
10 1.097 655 865 1.005 234 43
20 1.097 660 734 1.005 245 51
30 1.097 660 823 1.005 246 00
35 1.097 660 829 1.005 246 05
36 1.097 660 830 1.005 246 06
37 1.097 660 830 1.005 246 06
38 1.097 660 831 1.005 246 06
39 1.097 660 831 1.005 246 07
40 1.097 660 832 1.005 246 07
∞ 1.097 660 833 1.005 246 08

1.097 660 79a 1.004 8b

a Ivanov (1995).
b Brändas and Goscinski (1972).

unimportant and we suppress them by raisingk to k2. We also assume that expanding overr2
is less important than expanding overr1 because we are ordering the parametersa andb so
thata < b which means that the wavefunction exp(−br) is tighter and less influenced by the
interaction termZ−1/r12 than the wavefunction exp(−ar).

Full minimization (including nonlinear parametersa, b, andc) is done for a relatively
small size of the basis set,N 6 6. Then, we use fixed near-optimal parametersa, b, andc,
which are listed in table 2, to perform minimization over linear parametersCi,j,k up toN = 40.
Similar computations are performed for 2p2 3P state with an additional factor(x1y2− y1x2) in
the trial wavefunction, equation (8), (the second line in table 2) and with a different ionization
energyEI = −Z2/8. Results for the critical parameter 1/Zc = −Wmin are given in table 3.
Our results are considerably more accurate than the best results obtained previously (the last
line of table 3). Variational results give lower bounds for the parameter 1/Zc.

4. Two-electron atoms in a magnetic field

Variational calculations of energies of two-electron atoms in a constant homogeneous magnetic
field were done previously using various forms of the trial wavefunction (Henryet al 1974,
Larsen 1979, Scrinzi 1998, Beckenet al 1999). For the present ground-state calculations of
the critical charge, we use one of the simplest trial functions in the form of a linear combination
of products of hydrogen-like orbitals:

ψN =
∑

Ci1,i2,n1,n2,m[ri11 exp(−a1r1)r
i2
2 exp(−a2r2) cosn1(θ1) cosn2(θ2) sin|m|(θ1) sin|m|(θ2)

× exp(im(ϕ1− ϕ2)) + exchange] (9)
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Figure 1. The dependence of the critical charge,Zc, on the magnetic field strengthB for two-
electron atoms. The magnetic field is measured in atomic units (1 au= 2.35× 109 G).

where(r1, θ1, φ1) and(r2, θ2, φ2) are spherical coordinates of the electrons, and thez-axis is
chosen along the direction of the field. The summation is done over indicesi1, i2, n1, n2, m

subject to the restrictionsi1 + i22 +m2 6 N , i1 > n1 + |m|, i2 > n2 + |m|, wheren1 +n2 is even.
In the presence of a magnetic field, the Hamiltonian in equation (7) has an additional

diamagnetic interaction termB
′2

8 (r
2
1 sin2 θ1 + r2

2 sin2 θ2) whereB ′ = B/Z2, andB is the
magnetic field strength (in atomic units). The ionization energy is a sum of the ground-
state energy of the one-electron atom in a magnetic field and the energy of a free electron in
a magnetic field at the lowest Landau level,B/2. The energy of the one-electron atom in a
magnetic field is calculated using the method of 1/D expansion (Germannet al 1995).

Minimization of the variational functional is done in a similar way to that described in
section 3. For weak and medium fields, results of minimization converge with increasingN .
The critical parameter is found as a function of the scaled magnetic fieldB ′. By varyingB ′, we
determine the dependence ofZc onB = B ′Z2

c parametrically. The dependence of the critical
charge on a magnetic field is shown on figure 1. The magnetic field stabilizes the atom and
makes the critical charge smaller. However, for large fields this trend becomes weaker. Our
results agree with an estimationZc = 1/

√
2≈ 0.7 at largeB within a one-dimensional model

of Brummelhuis and Ruskai (1999).

5. Conclusion

Calculation of critical parameters is of fundamental importance because it gives the boundaries
of stability of a quantum system. In particular, recent calculations of critical charges for multi-
electron atoms (Hogreve 1998, Sergeev and Kais 1999) have shown the nonexistence of doubly
charged negative atomic ions. Our approach might be useful in combination with a recently
developed finite-size scaling method for quantum systems (Neirottiet al 1998, Serraet al
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1998). However, it would be desirable to develop a variational principle for critical indices
that can be found by the finite-size scaling method, which are unavailable within our present
approach.

In summary, we calculated critical parameters applying the generalized variational
principle (2) to more complex problems than has been done previously. For several problems
which are important in atomic physics, we obtained the following results: for the screened
Coulomb potential, we constructed a one-parameter variational trial function which is a very
accurate approximation to the threshold wavefunction for all azimuthal quantum numbers.
For two-electron atoms, we calculated the critical charges for the ground and excited 2p2 3P
states with a record accuracy and finally, we calculated, for the first time, the critical charges
for two-electron atoms in the presence of a magnetic field. Although our present approach is
limited to linear dependence onλ, such as for the two-electron atoms, research is underway to
generalize this approach to treat larger atoms.
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