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Abstract. The variational principle for eigenvalue problems with a nonidentity weight operator

is used to establish upper or lower bounds on critical parameters of quantum systems. Three
problems from atomic physics are considered as examples. Critical screening parameters for the
exponentially screened Coulomb potential are found using a trial function with one nonlinear
variational parameter. The critical charge for the helium isoelectronic series is found using a
Hylleraas-type trial function. Finally, critical charges for the same system subjected to a magnetic
field are found using a product of two hydrogen-like basis sets.

1. Introduction

The variational principle for eigenvalue problems is a well known method and has been widely
used in quantum calculations since the foundation of quantum mechanics. For the eigenvalue
equation of the form

L) = AM®) )

whereL andM are self-adjoint semi-bounded operators, the variational principle reads (Morse
and Feshbach 1953):

5[] = 6[ [vranav / / waf)dv] —o. @)

For a time-independent Sadinger equation)/ and are usually considered as the identity
operator and the energy, in this case equation (2) represents the variational principle for the
energy. Here, we point out the usefulness of the variational principle with a non-identity
‘weight’ operator,M, for calculations of critical parameters of quantum mechanical systems.
We consider a HamiltoniaH (y ) that depends on some continuous parameter. We call the
parametey = y., critical if the energy eigenvalue passes the border of the continuum spectrum
E;(y). For example, the border of the continuum spectrum is zero energy for one patrticle in
a finite-range potential, and it is the energy of the positive ion for an atom. If the Hamiltonian
and the border of the continuum depend linearly on the parametes. H(y) = Hy + Hiy,
E;(y) = Eg + E1y, then the Sclirdinger equation for the critical parameter,

Hy)y = Ei(yo)y (3

takes the form of equation (1) whefe= Hy — Eg, M = E1 — Hi, andi = y,, in which
case the variational principle can be used immediately. Often, a linear dependen@aon
be achieved by an appropriate scaling transformation before using the variational principle.
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A similar approach was used previously for critical screening parameters of the
exponentially screened (Hulth and Laurikainen 1951) and of the cut-off (Dettal 1985)
Coulomb potentials. Here we present a further demonstration of the power of the general
variational principle, equation (2), to obtain very accurate critical parameters for both simple
one-degree-of-freedom problems such as the Yukawa potential and for problems of several
degrees of freedom such as two-electron atoms in a magnetic field. To the best of our
knowledge, this general variational principle is used here for the first time to calculate critical
parameters for several degrees of freedom. Let us consider several examples to illustrate this
approach.

2. Yukawa potential

Thoughout the present paper we use atomic unit¢s e = m = 1. The radial Schirdinger
equation for one particle in a Yukawa potentialy) = —exp(—é8r)/r, after the scaling
transformationr — r/8, takes the form

1 d? N 1(1+1) 8_1exp(—r)
|: 2dr2 2r2 r

wherel is the azimuthal quantum numbénhe screening parametdf,the energy, and (r)

the radial wavefunction multiplied by. For a sufficiently large critical screening parameter

8 = §. the energy reaches the ionization border= 0.

Since boths2E and 5! enter equation (4) linearly, each of these quantities can be
determined by the variational method if another one is known in advance. Minimizing the
energy is a common use of the variational method in which £asequal to the Hamiltonian
and M = 1. Since for calculating critical parameters the energy is known in advance
(E = 0) ands is a variable to be found, here we minimize the quaritity 5. by choosing

S‘ZE} P(r)=0 4)

L=-3% +10D andym = exp(—r)/r, i.e. the Yukawa part of the Hamiltonian (4) is shifted
to the rhs.
We are looking for an extremum of the functional
w=[viwd / [ wmcrar (5)

using a trial function with only one variational parameter

2
D -1 —ar )
Pry=r <1 e ;n!r) (6)
The function, equation (6), behaves likgr) ~ r'** atr — 0 andP(r) ~ r' atr — oo

which is consistent with the behaviour of the general solution of the radiab8iciyer equation

at zero energy.

The functional, equation (5), appears to have a minimum at a certainan,,, these
values are listed in table 1 for different values.ofts minimum gives an approximation for the
eigenvalue.. The corresponding approximations for the critical screening parafetei !
together with the exact critical screening parameters, which have been found numerically by
integration of the Sclidinger equation, are listed in the last two columns of table 1. The
variational method yields excellent lower bounds for the critical screening parameters of the
lowest states in each subspace

Hulthén and Laurikainen (1951) used the variational method for the equivalent equation
(d?¢ /dx?)+[a+b(e™* /x)]¢ = Owitha treated as the known parameter aras the eigenvalue.
Since their zero-energy trial functiqgd — e™*) Y "_, h,€ "* is more elaborate than our trial
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Table 1. Results of minimization of the functional, equation (5), for the Yukawa potential with
a one-parameter trial function, equation (6). The exact critical parameters are given in the last
column for comparison.

l ®min 3¢ 3¢
0 1535 1190213 1190612
1190524
1.19058@
1.190 604
1 2534 Q0219800 0220217
2 3525 Q091085 0091 345
3 4517 0049670 0049 831
4 5513 Q031240 0031344
5 6510 Q021455 0021525
6 7507 0015642 0015691

7 8506 0011909 0011945

a Variational results of Hulten and Laurikainen (1951) for the trial function with one, two and
three effective parameters & 1, 2 and 3).

function 1—e~** (equation (6) at = 0), their variational results (displayed in terms$of 2/b
in table 1) are more accurate.

3. Two-electron atoms

The minimum nuclear chargé for which the given state of an atom remains a bound state is
called the critical charg&..

The calculation ofZ,. for two-electron atoms has a long history @éddas and Goscinski
1972, Stillinger 1966, Stillinger and Stillinger 1974, Stillinger and Weber 1974, Reinhardt
1977) with controversial results of whether or not the valueZgf is the same as the
radius of convergence of the perturbation series iZ,1Z;1. Bakeret al (1990) have
performed a 400-order perturbation calculation to resolve this controversy and found that
Z, = Z. where numericaII)Z;1 ~ 1.097 66. Using the Euler transformation of the series to
accelerate its convergence, Ivanov (1995) estimated the value of the radius of convergence as
Z;1~1.097 660 79.

The Schodinger equation for a two-electron atom, after the scaling transformation
r — r/Z, takes the form

1 1 1 1 1
[—-Vf —ovi- i lizal

-2
2 2 ri r2 ri12 z Ei| w - O (7)
whereZ is the charge of the nucleus a#dis the energy (in atomic units). For a sufficiently
small nuclear charge, & = Z. the energy reaches the ionization borfler= —Z2/2, which
is the energy of a one-electron atom. The equatiozfdnas the form of a general eigenvalue
equation (1) in which = —1v2 — 1v2 — 1/ry — 1/r,+ 3, M = 1/r1p, andr = —Z;L.
We are looking for an extremum of the functional, equation (5), using a Hylleraas-type trial
function of the form

Yy = Z Ci.ji[rirs exp(—ary — bra) + rari exp(—ary — bry)] exp(—crip)re,. (8)
i+j2+k2<N

The restriction on the summation indices j + k> < N is used instead of the more common
restrictioni + j + k < N in order to decrease the number of terms in the sum fmémﬁ
to ~%N2 . Here, we suppose that correlation terms with higher degrees afe relatively
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Table 2. Nonlinear parameters of the Hylleraas-type trial function, equation (8).

a b c
1£1s 035 103 003
2P%P 012 05 O

Table 3. The inverse of the critical charge found by minimization of the functional, equation (5),
using Hylleraas-type functions, equation (8), with fixed exponents which are listed in table 2. The
problem reduces to the calculation of the lowest eigenvalue of the matrix whose size increases by
~%N2. This matrix is computed using a multiple-precision arithmetic to avoid round-off errors.
Extrapolation taV — oo is done by Shanks transformation (Bender and Orszag 1978).

N 121s 207 %P

0 1007284224 ®6840090
10 1097655865 10523443
20 1097660734 10524551
30 1097660823 10524600
35 1097660829 10524605
36 1097660830 10524606
37 1097660830 10524606
38 1097660831 10524606
39 1097660831 10524607
40 1097660832 10524607
oo 1097660833 10524608

109766079 1.004&

alvanov (1995).
b Brandas and Goscinski (1972).

unimportant and we suppress them by raigirig k2. We also assume that expanding ower
is less important than expanding overbecause we are ordering the parameteasidb so
thata < b which means that the wavefunction €xr) is tighter and less influenced by the
interaction termz—1/r1, than the wavefunction exp-ar).

Full minimization (including nonlinear parametersb, andc) is done for a relatively
small size of the basis se¥, < 6. Then, we use fixed near-optimal parameters, andc,
which are listed in table 2, to perform minimization over linear paramétgrs up toN = 40.
Similar computations are performed for’Ap state with an additional factar y, — y1x) in
the trial wavefunction, equation (8), (the second line in table 2) and with a different ionization
energyE; = —Z?/8. Results for the critical parametef4, = — W, are given in table 3.

Our results are considerably more accurate than the best results obtained previously (the last
line of table 3). Variational results give lower bounds for the parametgr.1

4. Two-electron atoms in a magnetic field

Variational calculations of energies of two-electron atoms in a constant homogeneous magnetic
field were done previously using various forms of the trial wavefunction (Hehgt 1974,

Larsen 1979, Scrinzi 1998, Beckehal 1999). For the present ground-state calculations of
the critical charge, we use one of the simplest trial functions in the form of a linear combination
of products of hydrogen-like orbitals:

YN = Ciyipmyngmry €Xp(—arr1)ry exp(—azrz) COS™ (61) COS?(82) sin'™!(6) sin™ (62)
x exp(im(p1 — ¢2)) + exchange]

(9)
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Figure 1. The dependence of the critical chargg, on the magnetic field strength for two-
electron atoms. The magnetic field is measured in atomic units £ 285 x 10° G).

where(ry, 61, ¢1) and(r,, 62, ¢,) are spherical coordinates of the electrons, and thgis is
chosen along the direction of the field. The summation is done over indiggsni, nz, m
subject to the restriction'§+i§ +m? < N, iy > n1+|m|, i» > np+|m|, wherenq +n, is even.

In the presence of a magnetic field, the Hamiltonian in equation (7) has an additional
diamagnetic interaction ternﬁg—z(rl2 sin?6; + rZsin’6,) where B = B/Z? and B is the
magnetic field strength (in atomic units). The ionization energy is a sum of the ground-
state energy of the one-electron atom in a magnetic field and the energy of a free electron in
a magnetic field at the lowest Landau levBl,2. The energy of the one-electron atom in a
magnetic field is calculated using the method pblexpansion (Germanet al 1995).

Minimization of the variational functional is done in a similar way to that described in
section 3. For weak and medium fields, results of minimization converge with increisising
The critical parameter is found as a function of the scaled magnetidfieBy varyingB’, we
determine the dependencefon B = B’Z? parametrically. The dependence of the critical
charge on a magnetic field is shown on figure 1. The magnetic field stabilizes the atom and
makes the critical charge smaller. However, for large fields this trend becomes weaker. Our
results agree with an estimati@i = 1/+/2 ~ 0.7 at largeB within a one-dimensional model
of Brummelhuis and Ruskai (1999).

5. Conclusion

Calculation of critical parameters is of fundamental importance because it gives the boundaries
of stability of a quantum system. In particular, recent calculations of critical charges for multi-
electron atoms (Hogreve 1998, Sergeev and Kais 1999) have shown the nonexistence of doubly
charged negative atomic ions. Our approach might be useful in combination with a recently
developed finite-size scaling method for quantum systems (Ne@btl 1998, Serrzet al
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1998). However, it would be desirable to develop a variational principle for critical indices
that can be found by the finite-size scaling method, which are unavailable within our present
approach.

In summary, we calculated critical parameters applying the generalized variational
principle (2) to more complex problems than has been done previously. For several problems
which are important in atomic physics, we obtained the following results: for the screened
Coulomb potential, we constructed a one-parameter variational trial function which is a very
accurate approximation to the threshold wavefunction for all azimuthal quantum numbers.
For two-electron atoms, we calculated the critical charges for the ground and exdtél 2p
states with a record accuracy and finally, we calculated, for the first time, the critical charges
for two-electron atoms in the presence of a magnetic field. Although our present approach is
limited to linear dependence ansuch as for the two-electron atoms, research is underway to
generalize this approach to treat larger atoms.
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