
Variational principle for critical parameters of

quantum systems

A V Sergeev and S Kais

Purdue University, Department of Chemistry, 1393 Brown Building, West Lafayette,

IN 47907

Abstract. Variational principle for eigenvalue problems with a non-identity weight

operator is used to establish upper or lower bounds on critical parameters of quantum

systems. Three problems from atomic physics are considered as examples. Critical

screening parameters for the exponentially screened Coulomb potential are found using

a trial function with one non-linear variational parameter. The critical charge for

the helium isoelectronic series is found using a Hylleraas-type trial function. Finally,

critical charges for the same system subject to a magnetic �eld are found using a

product of two hydrogen-like basis sets.

PACS numbers: 03.65.Ge, 03.65.Db

1. Introduction

The variational principle for eigenvalue problems is a well-known method and widely

used in quantum calculations since the foundation of quantum mechanics. For the

eigenvalue equation of the form

L( ) = �M( ); (1)

where L and M are self-adjoint operators, the variational principle reads (Morse and

Feshbach 1953):

Æ[�] = Æ

�Z
 M( )dV=

Z
 L( )dV

�
= 0: (2)

For a time-independent Schr�odinger equation, M and � are usually considered as the

identity operator and the energy, in this case Equation (2) represents the variational

principle for the energy. Here, we point out the usefulness of the variational principle

with a non-identity "weight" operator M for calculations of critical parameters of

quantum-mechanical systems.
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We consider a Hamiltonian that depends on some continuous parameter 
. We call

the parameter 
 = 
c critical if the energy of the system reaches the ionization border

EI ,

H(
c) = EI(
c) : (3)

If the Hamiltonian and the border of ionization depend on the parameter 
 linearly,

i.e. H(
) = H0 + H1
, EI(
) = E0 + E1
 then the Schr�odinger equation for the

critical parameter, Equation (3) takes the form of Equation (1) where L = H0 � E0,

M = E1 � H1, and � = 
c, in which case the variational principle can be used

immediately. Often, a linear dependence on 
 should be achieved by an appropriate

scaling transformation before using the variational principle.

A similar approach was used earlier for critical screening parameters of the

exponentially screened (Hulth�en and Laurikainen, 1951) and of the cut-o� (Dutt, Singh,

and Varshni 1985) Coulomb potentials. Here we present a further demonstration of

the power of the general variational principle, Equation (2) to obtain very accurate

critical parameters for both simple one degree of freedom problems such as the Yukawa

potential and for problems of several degrees of freedom such as the two-electron atoms

in a magnetic �eld. To the best of our knowledge, this general variational principle is

used here for the �rst time to calculate critical parameters for several degrees of freedom.

Let us consider several examples to illustrate this approach.

2. Yukawa potential

The radial Schr�odinger equation for one particle in a Yukawa potential, v(r) =

� exp(�Ær)=r, after the scaling transformation r ! r=Æ, takes the form"
�
1

2

d2

dr2
+
l(l + 1)

2r2
� Æ�1

exp(�r)
r

� Æ�2E

#
P (r) = 0; (4)

where l is the azimuthal quantum number, Æ is the screening parameter, E is the

energy, and P (r) is the radial wave function multiplied by r (we use atomic units

�h = e = m = 1). For a suÆciently large critical screening parameter Æ = Æc the energy

reaches the ionization border EI = 0. The equation for the Æc has a form of a general

eigenvalue equation 1 in which L = �1
2
d
2

dr2
+ l(l+1)

2r2
,M = exp(�r)=r,  = P , and � = Æ�1

c
.

We are looking for an extremum of the functional

W =
Z
 M( )dV=

Z
 L( )dV (5)

using a trial function with only one variational parameter a:

eP (r) = r�l

 
1� e(�ar)

2lX
n=0

an

n!
rn
!
: (6)
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The function, Equation (6), behaves like eP (r) � rl+1 at r! 0 and eP (r) � r�l at r!1
which is consistent with the behavior of the general solution of the radial Schr�odinger

equation at zero energy.

The functional, Equation (5), appears to have a minimum at a certain a = amin,

these values are listed in Table 1 for di�erent values of l. Its minimum gives an

Table 1. Results of minimization of the functional, Equation (5), for the Yukawa

potential with one-parameter trial function, Equation (6). The exact critical

parameters are given in the last column for comparison.

l amin

eÆc Æc

0 1:535 1:190 213 1:190 612

1 2:534 0:219 800 0:220 217

2 3:525 0:091 085 0:091 345

3 4:517 0:049 670 0:049 831

4 5:513 0:031 240 0:031 344

5 6:510 0:021 455 0:021 525

6 7:507 0:015 642 0:015 691

7 8:506 0:011 909 0:011 945

approximation for the eigenvalue e�. The corresponding approximations for the critical

screening parameter eÆc = e��1 together with the exact critical screening parameters,

which have been found numerically by integration of the Schr�odinger equation, are listed

in the last two columns of Table 1. The variational method yields excellent lower bounds

for the critical screening parameters of the lowest states in each l subspace. Hulth�en and

Laurikainen (1951) used, for the ground state (l = 0), a di�erent trial function in the

form of the expansion (1� e�x)
P

n

�=0 h�e
��x. Since it has several variational variables,

their results are more accurate.

3. Two-electron atoms

Calculation of the critical nuclear charge Zc for two-electron atoms has long history

(Br�andas and Goscinski 1972, Stillinger 1966, Stillinger and Stillinger 1974, Stillinger

and Weber 1974, Reinhardt 1977) with controversial results of whether or not the value

of 1=Zc is the same as the radius of convergence of the perturbation series in 1=Z, 1=Z�.

Baker et al (1990) have performed a 400-order perturbation calculation to resolve this

controversy and found that 1=Z� = 1=Zc where numerically Z�1
�
� 1:097 66. Using Euler

transformation of the series that accelerates its convergence, Ivanov (1995) estimated

the value of the radius of convergence as Z�1
�
� 1:097 660 79.
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The Schr�odinger equation for a two-electron atom, after the scaling transformation

r! r=Z, takes the form�
�
1

2
r2

1 �
1

2
r2

2 �
1

r1
�

1

r2
+ Z�1 1

r12
� Z�2E

�
 = 0; (7)

where Z is the charge of the nucleus and E is the energy (in atomic units). For a

suÆciently small nuclear charge, at Z = Zc the energy reaches the ionization border

EI = �Z2=2, which is the energy of one-electron atom. The equation for the Zc has a

form of a general eigenvalue equation 1 in which L = �1
2
r2

1�
1
2
r2

2� 1=r1� 1=r2 + 1=2,

M = 1=r12, and � = �Z�1
c
. We are looking for an extremum of the functional,

Equation (5), using a Hylleraas-type trial function of the form

 N =
P

i+j2+k2�N
Ci;j;k

h
ri1r

j

2 exp(�ar1 � br2) + ri2r
j

1 exp(�ar2 � br1)
i

exp(�cr12)rk12:
(8)

The restriction on the summation indexes i + j2 + k2 � N is used instead of the more

common restriction i+ j + k � N in order to decrease the number of terms in the sum

from � 1
6
N3 to � �

8
N2 . Here, we suppose that correlation terms with higher degrees of

r12 are relatively unimportant and we suppress them by rising k to k2. We also assume

that expanding over r2 is less important that expanding over r1 because we are ordering

the parameters a and b so that a < b which means that the wave function exp(�br) is
tighter and is less in
uenced by the interaction term Z�1=r12 than the wave function

exp(�ar).
Full minimization (including non-linear parameters a, b, and c) is done for a

relatively small size of the basis set, N � 6. Then, we use �xed near-optimal parameters

a, b, and c, which are listed in Table 2, to perform minimization over linear parameters

Ci;j;k up to N = 40. Similar computations are performed for 2p2 3P state with an

Table 2. Nonlinear parameters of the Hylleraas-type trial function, Equation (8).

a b c

1s2 1S 0:35 1:03 0:03

2p2 3P 0:12 0:5 0

additional factor (x1y2 � y1x2) in the trial wave function, Equation (8), (the second

line in Table 2) and with a di�erent ionization energy EI = �Z2=8. Results for the

critical parameter 1=Zc = �Wmin are given in Table 3. Our results are considerably

more accurate than the best earlier results (the last line of Table 3). Variational results

give lower bounds for the parameter 1=Zc.
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Table 3. The inverse of the critical charge found by minimization of the functional,

Equation (5), using Hylleraas-type functions, Equation (8), with �xed exponents which

are listed in Table 2. The problem reduces to calculation of the lowest eigenvalue of the

matrix which size increases � �

8
N2. This matrix is computed using multiple-precision

arithmetic to avoid round-o� errors. Extrapolation to N ! 1 is done by Shanks

transformation (Bender and Orszag 1978).

N 1s2 1S 2p2 3P

0 1:007 284 224 0:968 400 90a

10 1:097 655 865 1:005 234 43

20 1:097 660 734 1:005 245 51

30 1:097 660 823 1:005 246 00

35 1:097 660 829 1:005 246 05

36 1:097 660 830 1:005 246 06

37 1:097 660 830 1:005 246 06

38 1:097 660 831 1:005 246 06

39 1:097 660 831 1:005 246 07

40 1:097 660 832 1:005 246 07

1 1:097 660 833 1:005 246 08

1:097 660 79a 1:004 8b

aIvanov (1995)
bBr�andas and Goscinski (1972)

4. Two-electron atoms in a magnetic �eld

Variational calculations for two-electron atoms in a magnetic �eld were done using

di�erent forms of the trial wave function (Henry et al 1974, Larsen 1979, Scrinzi 1998,

Becken et al 1999). For the present ground-state calculations we use one of the simplest

trial function in the form of a linear combination of products of Slater orbitals

 N =
P
Ci1;i2;n1;n2;m

h
ri11 exp(�a1r1)ri22 exp(�a2r2) cosn1(�1) cosn2(�2)

sinjmj(�1) sin
jmj(�2) exp(im('1 � '2)) + exchange

i
:

(9)

The summation is done over indexes i1; i2; n1; n2; m subject to restrictions i1+ i
2
2+m

2 �
N , i1 � n1 + jmj, i2 � n2 + jmj, and n1 + n2 is even.

In the presence of a magnetic �eld, the Hamiltonian in Equation (7) has an additional

diamagnetic interaction term B
02

8

�
r21 sin

2 �1 + r22 sin
2 �2

�
where B0 = B=Z2, and B is the

magnetic �eld strength (in atomic units). The ionization energy which is equal to the

ground state energy of the one-electron atom in a magnetic �eld is calculated using the

method of 1=D-expansion (Germann et al 1995).

Minimization of the variational functional is done in a similar way as was described in

Section 3. For weak and medium �elds, results of minimization converge with increase
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of N . The critical parameter is found as a function of the scaled magnetic �eld B0.

By varying B0, we determine the dependence of Zc on B = B0Z2
c
parametrically. The

dependence of the critical charge on a magnetic �eld is shown on Figure 1. The magnetic

�eld stabilizes the atom and makes the critical charge smaller. However, for large �elds

this trend becomes weaker. Our results agree with an estimation Zc = 1=
p
2 � 0:7 at

large B within a one-dimensional model of Brummelhuis and Ruskai (1999).

5. Conclusion

Calculation of critical parameters is of fundamental importance because it gives

boundaries of stability of a quantum system. Particularly, recent calculations of critical

charges for multi-electron atoms (Hogreve 1998, Sergeev and Kais 1999) show the

nonexistence of doubly charged negative atomic ions. Our approach might be useful in

combination with a recently developed �nite-size scaling method for quantum systems

(Neirotti et al 1998, Serra et al 1998). However, it would be desirable to develop a

variational principle for critical indexes that can be found by the �nite-size scaling

method, which are unavailable within our present approach.

In summary, we have generalized the variational principle to obtain the critical

parameters for quantum systems with several degrees of freedom. For several problems

which are important in atomic physics, we obtained the following results: For the

screened Coulomb potential, we constructed a one-parameter variational trial function

which is very accurate approximation to the threshold wave function for all azimuthal

quantum numbers. For two-electron atoms, we calculated the critical charges for the

ground and excited 2p2 3P states with a record accuracy and �nally, we calculated, for

the �rst time, the critical charges for two-electron atoms in the presence of a magnetic

�eld. Although our present approach is limited to linear dependence on �, such as for

the two-electron atoms, research is underway to generalize this approach to treat larger

atoms.
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Figure captions

Figure 1. The dependence of the critical charge, Zc, on the magnetic �eld strength B

for two-electron atoms. Magnetic �eld is measured in atomic units (1 a:u: = 2:35�109G)


