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Perturbation theory is used to perform noniterative calcu-
lations of energy eigenvalues of the coupled ordinary di�eren-
tial equations that result from imposing separability assump-
tions in terms of normal coordinates on vibrational wavefunc-
tions. Various model Hamiltonians with 2 or 3 coupled nor-
mal modes are studied and the increase of computational cost
with the number of degrees of freedom is analyzed. Quadratic
Pad�e approximants of the perturbation expansions are rapidly
convergent, and directly yield complex numbers for resonance
eigenvalues. For a 3-mode system, results are obtained within
partial separability assumptions, with a pair of modes left
coupled. Large-order perturbation theory with partial sepa-
rability is suggested as an alternative to low-order exact per-
turbation theory.

I. INTRODUCTION

The vibrational self-consistent-�eld (VSCF) approxi-
mation [1{3], in which the molecular vibrational wave-
function is expressed as a separable product of normal-
coordinate functions, extends normal-mode analysis to
mildly anharmonic systems with only a modest increase
in computational di�culty. For tightly bound molecules
such as H2O and CO2 the separability assumption in-
troduces a systematic error in the energy on the order
of 1%. However, it makes the analysis of large systems
computationally feasible [4,5]. To improve the accuracy,
VSCF wavefunctions can be used as the basis for a \state-
interaction" calculation, analogous to the con�guration-
interaction method for electronic structure calculations,
but this greatly increases the computational cost.
Here we study VSCF approximations in the con-

text of large-order perturbation theory. It was recently
demonstrated that large-order Rayleigh-Schr�odinger per-
turbation theory can have a signi�cant advantage in
computational cost over variational methods for solving
the Schr�odinger equation for vibration spectra [6] and
vibration-rotation spectra [7]. In addition it is a con-
venient approach for calculating resonance energies, be-
cause the computational algorithm for resonance eigen-
values is equivalent to that for bound states, as long as
appropriate summation approximants are used [8{10].
In Ref. [11] a general algorithmwas developed for solv-

ing SCF equations with perturbation theory. Perturba-
tion theory decouples the equations order by order, thus
yielding direct, noniterative, solutions for asymptotic ex-

pansions of wavefunctions and energies. Furthermore, it
was shown that perturbation theory was straightforward
to apply with partial separability, with the wavefunction
expressed as a separable product of functions that depend
on clusters of normal coordinates.
We have several motivations for developing an SCF

perturbation theory of molecular vibrations. The �rst
is to provide a feasible strategy for applying perturba-
tion theory to large molecules. The cost of comput-
ing high-order coe�cients of perturbation expansions in-
creases rapidly with the number of degrees of freedom.
Large-order SCF perturbation theory is an alternative
to low-order exact perturbation theory. Thus one can
eliminate the error from premature truncation of the
expansion at the cost of introducing a systematic er-
ror from a separability assumption. Another motiva-
tion is to study the accuracy of partial separability as-
sumptions. Partial separability o�ers an alternative to
the state-interaction method for systematically improv-
ing the accuracy of VSCF calculations. It can also be
used as a probe of the degree of interaction between par-
ticular normal modes. Finally, SCF perturbation theory
can be applied to a wide variety of problems including,
for example, the electronic Schr�odinger equation [11{13].
The molecular vibration problem is a straightforward test
case for the general theory.
In Section II we outline the calculation method. In

Section III we brie
y treat a special case in which the
SCF equations can be solved exactly, and then present re-
sults from perturbation theory for various 2- and 3-mode
systems that have been treated previously in the litera-
ture. The emphasis is on determining the rate of con-
vergence of the perturbation expansions and on studying
the accuracy of the SCF approximation for imaginary
parts of resonance energies. For a 3-mode system we
compare the accuracy of partial separability approxima-
tions to that of state-interaction calculations. Section IV
contains an analysis of how the computational cost of
large-order SCF perturbation theory increases with the
number of degrees of freedom. In Section V we discuss
potential advantages of this theory and suggest future
applications.

II. SCF THEORY

Consider a Hamiltonian of the form

H = w(q) +

NX
�=1

h(�)(q�); (1)
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q = fq1; q2; : : : ; qNg is the set of harmonic normal coordi-
nates, which diagonalizes the harmonic expansion of H,
and w(q) is a polynomial with degree of at least 3 that
couples the q�. The SCF method consists of replacing
the partial di�erential Schr�odinger equation H	 = E	
with a set of coupled ordinary di�erential equations,�

H(�) � �(�)
�
 (�)(q�) = 0; (3a)

H(�) = h(�)(q�) + �w(�)(q�); (3b)
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�
: (3c)

Equations (3) result from substituting for the wavefunc-
tion a separable product 	 =

Q
�  

(�)(q�) and then ap-
plying the variational principle for the energy with 	
constrained to be normalized.
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where H0 is the sum of w and all of the anharmonic terms
in the h(�). We will write H0 in the form

H0 =
X
k=1

�k=2

"
wk(q) +

X
�

��;kq
k+2
�

#
; (5)

where � is a perturbation parameter and the wk are sums
of monomials of degree k + 2 that couple normal coor-
dinates. The physical solution corresponds to � = 1. It
follows that  (�) and the �(�) have asymptotic expansions

 (�)(q�) =

1X
k=0

�k=2 
(�)

k (q�); (6)
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(�)
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Substituting these into Eqs. (3) and collecting terms mul-
tiplied by �k=2 yields a set of N equations for each value
of k. These equations are coupled implicitly through the
dependence of �w(�) on the  (� 6=�). The total vibrational
energy is

E =
1

N

X
�
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+
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+
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X
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w(�1;�2;:::;�N�1)

E
; (8)

where the w(�1;:::) are the terms in w(q) that cou-
ple the designated normal coordinates. Here we will
only consider functions H0 such that H0(�q; �1=2) =
H0(q;��1=2). It follows that the asymptotic expansion
of E will only include integer powers of �.
Now consider the expansions in powers of �1=2 that

result for the terms �w(�)(q�). Substituting Eq. (6) into

Eq. (3c) yields a sum of terms


 
(�)

k1

��wk2

�� (�)

k3

�
. For terms

at order �k=2, we have k1 + k2 + k3 = k. However, the
smallest possible value of k2 is 1, which implies that the
largest possible value for k1 or k3 is k � 1. Therefore,

the equation that determines  
(�)

k depends on the  
(� 6=�)

k0

only for k0 < k. Thus, perturbation theory uncouples the
SCF equations order by order. Detailed derivations of the
perturbation equations, and an e�cient linear algebraic
algorithm for solving them, are given in Ref. [11].
It is straightforward to extend this method to cases

in which w contains di�erential operators and to cases
in which the wavefunctions are subject to less drastic
separability assumptions [11], for example,

	(q) =  (a)(qa) 
(b)(qb) 

(c)(qc) � � � ; (9)

where the q� are arbitrary subsets of the full set q.

III. RESULTS

A. An exactly solvable case

Consider a system of two harmonic oscillators with cu-
bic coupling, described by the Hamiltonian

H = �
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which has been widely used to model the vibrations of
nonbending triatomicmolecules [14]. The mode-averaged
Hamiltonians are

H(x) = �
1

2
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where �!2
y = �!2

y � 2�hxi. The change of variable

x = ~x+ hxi = ~x+ �hy2i=!x (12)

yields a system of unperturbed harmonic oscillators, with
total energy

E =

�
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1
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(13)

where �!y is determined from the equation
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�!3
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y�!y + (2ny + 1)�2=!2
x = 0: (14)

The SCF energy is complex if

�2 >

p
3

9

�
ny +

1

2

��1

!2
x!

3
y; (15)

in which case the eigenstate represents a resonance. The
energy of the resonance is <E and the width is � � 2j=Ej
[15]. Since the value of the last term in Eq. (13) does not
depend on nx, the width of the resonance, within the SCF
approximation, depends only on ny. Figure 1 compares
the SCF results to exact results for various eigenstates.
(The \exact" energies were calculated with large-order
perturbation theory [6] without the separability assump-
tion.) We have subtracted (nx+

1
2
)!x from the real part

in Fig. 1 to make the SCF curves independent of nx.
The exact results show a weak dependence on nx. The
exact imaginary part is nonzero for all � > 0, although
it becomes exponentially small as � approaches zero.
Note that the accuracy of the SCF approximation for

the state (nx; ny) = (0; 1) is greater than that for (1,0).
This is perhaps due to the fact that Eq. (13) includes
nonlinear behavior only in ny; the nx spectrum within
the SCF approximation is purely harmonic. We �nd that
the SCF results for the (0; n) states in general tend to be
more accurate than those for the (n; 0) states, although
this trend becomes less noticeable for very large n.

B. 2-mode systems

Consider the Hamiltonian

H = �
1

2

@2

@x2
�

1

2

@2

@y2

+
1

2
!2
xx

2+
1

2
!2
yy

2 � �(xy2 + �x3); (16)

which was studied by Eastes and Marcus [16] for var-
ious values of !x, !y, � and �. Let �1=2 = � be the
perturbation parameter. Expansions for the exact en-
ergy eigenvalues, without separability, were calculated in
Ref. [6]. Although these expansions are in principle di-
vergent if taken to high enough order [17], in practice
the partial sums were rapidly convergent and the rate of
convergence could be increased by Pad�e summation. We
�nd that the SCF expansions behave similarly, but the
rate of convergence is even more rapid than for the exact
perturbation expansions. Furthermore, we �nd that the
convergence for both the exact and the SCF expansions
can be improved by using quadratic Pad�e approximants
[18],

S[n;m;l] =
1

2Rn

�
Qm �

p
Q2
m + 4PlRn

�
; (17)

where Pl, Qm, and Rn are polynomial of degrees l, m, n,
respectively, in the expansion parameter. These polyno-
mials are determined from the asymptotic relation

RE2 + QE � P � O
�
�n+m+l+2

�
; (18)

with E in Eq. (18) representing the asymptotic expan-
sion of the energy. A comparison of the convergence of
the quadratic approximants for the exact and SCF ex-
pansions is given in Fig. 2.
Quadratic approximants are especially useful for reso-

nance eigenvalues [8{10]. Since the expansion coe�cients
that we calculate for E are real numbers, the standard
linear Pad�e approximants S[n;m] = Pn=Qm, de�ned by

QE � P � O(�n+m+1), will always be real. However,
quadratic approximants will give an imaginary part when
the discriminant is negative. Figure 3 compares the con-
verged values of SCF and exact energies. The qualitative
trends in the accuracy of the SCF approximation are sim-
ilar to those in Fig. 1.
Another model for vibrational resonances is

H = �
1
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which was devised by Waite and Miller [19] to describe
unimolecular dissociation, and has been studied within
the SCF approximation by Christo�el and Bowman [20]
and by Farrelly and coworkers [21,22]. The potential has
a symmetric double barrier in the x mode. It is con-
venient to express this problem as a semiclassical per-
turbation theory [23], with the perturbation parameter
multiplying the kinetic energy:�
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�
+ V (x; y) �E

�
	 = 0: (20)

If we make the substitutions x ! �1=2x, y ! �1=2y,
and E ! �E and then expand the potential in powers
of �1=2, then we obtain a Hamiltonian that is essentially
in the form given by Eqs. (4) and (5). SCF results from
quadratic Pad�e summation are presented in Table I. Fig-
ure 4 shows representative convergence plots. The accu-
racy obtained at given order for the imaginary part is
approximately the same as that for the real part.

C. A 3-mode system

Consider the Hamiltonian

H = �
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with !x = 0:7, !y = 1:3, !z = 1:0, � = 0:1, and �1=2 =
0:1. This is another standard test case [24{26]. There are
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now four possible normal-mode separability assumptions
|three in which a pair of modes is left coupled and one
with all modes separated.
Christo�el and Bowman [25] used an iterative method

to calculate SCF energies for this system and then used
an expansion of the exact wavefunction in terms of a �nite
set of SCF wavefunctions to obtain a variational estimate
for the exact energy. This \state-interaction" method
will converge to the exact energy (for bound states) as
the size of the SCF basis is increased. The computational
cost is not too high for 3-mode systems, but increases
rapidly with the number of degrees of freedom. Norris
et al. recently studied this system using M�ller-Plesset
perturbation theory [26].
We consider the cases 	fx;y;zg =  (a)(x) (b)(y; z) and

	fz;x;yg =  (a)(x; y) (b)(z). (The case fy;x; zg is for
this system equivalent to full separability, since none of
the coupling terms in Eq. (21) couple x and z.) Fig-
ure 5 compares the accuracy of the various separabil-
ity assumptions for the states (nx,0,0) and (0,ny,0). As
nx increases, the accuracy of fz;x; yg holds steady while
fx; y; zg and fx; y; zg become less accurate. Increasing nx
causes an increase in the expectation value of jxj, which
increases the importance of the term xy2 in Eq. (21);
hence, the approximations with x and y separated be-
come less accurate as this term becomes more important.
As ny increases, the fx; y; zg separability approximation
becomes the most accurate. This appears to be analo-
gous to the trend seen in Fig. 1 for the exactly solvable
problem: If the coupling between two normal coordinates
has the form q1q

2
2, then the SCF approximation tends to

be more accurate for (0; n2) excitations than for (n1; 0)
excitations. Thus, fx; y; zg separability with xy2 cou-
pling and ny excitation tends to be more accurate than
fz;x; yg with yz2 coupling and ny excitation.
Also shown in Fig. 5 is the accuracy obtained using

the state-interaction method, with various basis sizes,
for those cases in which the results in Ref. [25] are of
su�cient precision for comparison. For the (2,0,0) state
the fz;x; yg approximation is comparable in accuracy to
a state-interaction calculation with a 39-state basis set
consisting of all states with nx + ny + nz < 5. For
the (1,0,0) state it is less accurate than a 39-state cal-
culation but more accurate than a 20-state calculation
(nx + ny + nz < 4). For the ground state it is less accu-
rate than a 20-state calculation but more accurate than
a 10-state calculation (nx+ny +nz < 3). For (0,1,0) the
fx; y; zg approximation is between the 20- and 39-state
calculations in accuracy.

IV. COMPUTATIONAL COST

One advantage of SCF perturbation theory over exact
perturbation theory is a decrease in computer memory
requirements. Consider a system with N degrees of free-
dom. For exact perturbation theory the wavefunction

component 	k at order k in the expansion can be de-
scribed [27] by a tensor ak of rank N that contains the
coe�cients of a linear superposition of harmonic eigen-
functions. In each dimension of the tensor the number
of nonzero elements increases linearly with k. Therefore
the SCF approximation reduces the scaling with k from
kN to

P
� k

N� where N� is the number of coupled coor-
dinates in coordinate group �.
Another advantage of SCF approximations is a de-

crease in computational time; that is, the number of
arithmetic operations needed to compute the energy ex-
pansion to given asymptotic order. Consider the compu-
tational cost of exact (unseparated) perturbation theory.
The recursion relation [6,27] that expresses the tensor aj
in terms of the ai<j has the following form for harmonic
Hamiltonians with polynomial perturbations:

aj = K

 
Vaj�1 +

jX
i=1

�iaj�i

!
: (22)

K is a diagonal operator that depends on the frequencies
and quantum numbers, V is the operator representation
of the perturbing potential, and the �j are the energy
expansion coe�cients. The �j are given by the equation
�ja0 = Vaj�1. Explicit expressions for K and V for var-
ious oscillator systems are given in Refs. [6] and [29]. In
the limit of large j the number of arithmetic operations
in Eq. (22) is proportional to jN+1, due to the summa-
tion over i. Therefore, a calculation of the perturbation
theory through order k has a cost proportional to kN+2.
The SCF approximations reduce the cost from the re-

cursion relations to
P

� k
N�+2 in the limit of large k.

However, they replace the term Vaj�1 with a sum in the

form
Pj

i=1Viaj�i. Additional operations are needed to
compute the operators Vi, which for a given coordinate
group depend on the wavefunction tensors of the other
coordinate groups, and to calculate the Viaj�i. These
new operations do not increase the exponents in the cost
scaling but they do increase the proportionality constant.
At high enough order the SCF calculation will have a cost
advantage over the exact calculation, but this may not
always be the case at lower orders. In general, for an
arbitrary number of degrees of freedom, the greatest cost
savings will be obtained when the coordinates are divided
into groups that are approximately equal in size.
A third advantage of the SCF approximations is an im-

provement in the rate of convergence of the perturbation
expansions, which was illustrated in Fig. 2. This e�ect
appears to increase with the degree of excitation.

V. DISCUSSION

SCF perturbation theory extends the applicability of
exact perturbation methods in the same way that itera-
tive SCF theory does for the standard variational treat-
ment, in which the Hamiltonian is diagonalized in a �nite
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basis. Results from various studies [6,7,9,11,17,26,28{31]
suggest that perturbation theory has potentially signif-
icant advantages over diagonalization: It can be more
cost e�cient, it provides a 
exible theoretical framework
for formulating new approximation schemes, and it gives
a uniform approach to di�erent types of calculations.
A clear advantage in cost e�ciency of perturbation the-

ory over diagonalization for calculating vibrational spec-
tra (without separability assumptions) was demonstrated
in Ref. [6]. For vibration-rotation spectra the advantage
can be even more signi�cant, using a semiclassical per-
turbation theory [7,29]. For VSCF calculations with full
separability this cost advantage is not so important, since
standard methods are extremely e�cient [4]. However,
in treatments of large molecules using partial separabil-
ity with large cluster sizes the advantage of perturbation
theory will likely be signi�cant.
The 
exibility of perturbation theory is exempli�ed by

our VSCF calculations with partial separability. Pertur-
bation theory is a natural technique for this calculation
since only minor modi�cations of the computational al-
gorithm are required in order to invoke separability in
terms of clusters of coordinates instead of individual co-
ordinates. This approach is not limited to the use of
normal coordinates. It is possible to extend the method
to treat separability assumptions in terms of arbitrary
coordinates. This is important, since it is well known
that the accuracy of VSCF approximations can depend
strongly on the choice of coordinates [32,33].
The uniform nature of perturbation theory is illus-

trated by the fact that our treatment of resonances is
identical to that for bound states. This makes the
method well suited for studying states with energies
close to the classical dissociation energy, which would
be important, for example, in an ab initio treatment of
unimolecular reaction rates. Furthermore, the compu-
tational algorithm used here can describe the dynam-
ics of electrons as well as that of nuclei. For example,
in Ref. [13] we used a semiclassical SCF perturbation
expansion to solve the electronic Schr�odinger equation
for a hydrogen atom in a strong magnetic �eld and in
Ref. [12] �rst-order SCF dimensional expansions were
used to study electron correlation in two-electron atoms.
Partial separability assumptions o�er a compromise

between the computationally e�cient but somewhat in-
accurate limit of full separability and the less e�cient but
exact state-interaction method. This approach is closely
related to the dressed-state truncation-recoupling theory
proposed by Bowman and Gazdy [34] in which a subset
of modes is left coupled while the remaining \dressing"
modes are treated as completely separable. The most
e�cient application of VSCF perturbation theory is for
calculations with the modes evenly partitioned into clus-
ters.
It is of particular interest to compare low-order per-

turbation theory of the nonseparated exact problem to
our large-order theory with partial separability. The for-
mer method introduces a truncation error while the lat-

ter method sums the perturbation expansion with high
precision but at the cost of a systematic error from the
separability assumption. An advantage of the low-order
exact theory is that it is easier to implement. The
computational algorithms for exact perturbation theories
[6,27{29] are simpler than that for SCF theory. If the an-
harmonic terms in the potential are not too large then the
convergence of the perturbation expansion can be su�-
ciently fast that the truncation error will be smaller than
the SCF error, but if there is strong anharmonicity and
weak coupling then the truncation can cause the larger
error. For example, with the Hamiltonian of Eq. (21)
exact Rayleigh-Schr�odinger perturbation theory for the
ground state at �rst order is already more accurate than
the converged SCF results. However, if the the anhar-
monicity constant � is increased by a factor of 5, then
it is not until order 9 that the truncation error becomes
smaller than the fz;x; yg SCF error. Of course, if there
is a clear physical reason for partitioning the coordinates,
then partial separability will be relatively more accurate.
For example, if the xy2 coupling constant in Eq. (21) is
increased by a factor of 5, then the exact theory again
does not surpass the converged fz;x; yg accuracy until
order 9. Finally, an appealing feature of the SCF theory
is that the error it introduces has a much more straight-
forward physical interpretation (i.e. separable dynam-
ics) than does the error from low-order truncation of an
exact theory. By determining the accuracies of di�er-
ent separability assumptions one could hope to develop
a qualitative understanding of the complicated dynamics
of polyatomic molecular vibration.
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TABLE I. Energy eigenvalues of the Hamiltonian given by
Eqs. (19). Results from SCF perturbation theory (49th-order,
summed with quadratic approximants) are compared with re-
sults of iterative complex-coordinate SCF theory from numer-
ical integration. The barrier height is 36.777 in the uncoupled
x-coordinate potential.

nx ny SCFPT iterative SCFa

4 0 30:673 282 1 � i0:000 045 7 30:675� i0:441 � 10�4

4 1 37:126 304 8 � i0:000 088 7
5 0 35:209 647 � i0:006 208 35:212� i0:594 � 10�2

6 0 38:802 13 � i0:187 43 38:805� i0:185
8 0 43:884 2 � i3:163 5 43:885� i3:162

aRef. [22]
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FIG. 1. Real and imaginary parts of the energy eigenvalues
of the Hamiltonian in Eq. (10) with !x = 1 and !y = 1:1,
vs. the coupling constant �. Solid curves show SCF results
while the dashed curves show exact results. The curves are
labeled by the quantum numbers (nx; ny). The SCF results
are independent of nx.

FIG. 2. Convergence of quadratic Pad�e approximants for
SCF energies (solid curves) and exact energies (dashed curves)
for the 2-mode cubic oscillator with Hamiltonian given by
Eq. 16 with !x = 0:54198, !y = 1:45802, � = 0:11160,
� = 0:08414. The ordinate is � log

10
j(Eapprox � E1)=E1)j,

where Eapprox is the result from the summation approximant
at given order and E1 is the converged result from large-order
perturbation theory. Diamonds indicate the (nx; ny) = (0; 0)
state, crosses the (2,0) state, and squares the (2,2) state.

FIG. 3. Real and imaginary parts of the energy eigenvalues
of the Hamiltonian in Eq. (16), with !x = 1, !y = 1:1 and
� = 0:1, vs. the coupling constant �. Solid curves show SCF
results while the dashed curves show exact results. The curves
are labeled by the quantum numbers (nx; ny).

FIG. 4. Convergence of quadratic Pad�e approximants for
SCF energies from the Hamiltonian given by Eqs. (19) with
quantum numbers (nx; ny) = (4; 0) and (8,0). Solid curves
correspond to � log

10
j(<Eapprox � <E1)=<E1j and dotted

curves to � log
10
j(=Eapprox�=E1)=<E1j, where E1 is the

49th-order result and Eapprox is the value of the diagonal
quadratic approximant at given order.

FIG. 5. Accuracy vs. quantum number from the vari-
ous SCF approximations for the 3-mode system described
by Eq. (21), with accuracy de�ned as � log

10
jESCF �Eexactj

with E in atomic units. Eexact is the converged result from
exact large-order perturbation theory. ESCF is from pertur-
bation theory with the following separability assumptions:
fx; y; zg [dashed curves], fz;x; yg [dash-dot curves], fx; y; zg
[solid curves]. The quantum numbers (nx; ny; nz) are as indi-
cated. Also shown are results of state-interaction calculations
from Ref. [25] for basis set size 10 (4), 20 (�), and 39 (2).
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